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Take-Home Message

As for any other QM-based method the important message to keep in mind is : Accuracy is less
important than Pertinence...

Be aware of each method strength and weakness is crucial

e to choose the appropriate method for the system / property of interest

e not to over-interpret the (non exact) results
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Schrodinger Equation (1926)

e Born-Oppenheimer approximation : H(r; , Ry) = I:If?’a(r,)

e Time-independent (non-relativistic) Schrédinger equation

A pn(x1, %0, -y Xn) = En (X1, %2, -+, Xn)

. 1< 1 Zo, 1
G DI R DI EDR I

e n(x1,x2,...,xn) 1 n-particles wave function x;i = ri(xi,yi,zi) ® a,-(:i:%)

e Electronic energy : functional of ¢,

) L (o1, 0))
Enln] = (Pn(xt, ..y xn) | ¥n(x1,. .. xn) )

e 1, and Ep[1)n] — all thermodynamic properties
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How to Solve Schrodinger Equation?

@ Mono-electronic approximation

Yn(X1, ..., Xn) : antisymmetrized product of mono-electronic functions ¢; (MOs)

$n(x1, . xn) ~ A T ¢i(x)

$1(x1)  2(x1) ... ¢n(x)

1| 102) d20x) ... én(x2)
¢n(X1aX2’~-~7Xn):ﬁ : : ; : =|¢1,¢3,...,¢n |

d1(xn)  d2(xn) ... Pn(xn)

@ Mean-Field approximation

3
1

n n
D S B D DR a,%;v,j -
JF#i

n
o
i=1 o fia i T i=1 =

i

— The Hartree-Fock method (1928 - 1930)
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The Hartree-Fock method 1928-1930

[ n (i],_},—;z(\//j) _ n (/AU-F;Z{jj_KJ})

i=1 J#i i=1

> Coulomb (J;) and Exchange (K;) space operators

3y ¢i(n) :/tﬁ(fz)%qﬁj(fz)dfz ¢i(r) Ji2 = //¢?(r1)¢f(rz)étbi(fl)tbj(rz)dfzdfl

K ¢i(n) :/¢f(f2)%¢i(fz)df2 #i(n) Ky = //¢7(f1)¢f(f2)%¢j(f1)¢i(f2)df2df1

> two-electron integrals : tough and time-consuming task !
> more important : action depends on the solution !
— self-consistent solution (iterative procedure)

e Energy Decomposition

n 1 n
ES Tl =D e + 5 > o> Ui —Ky)
i=1

i=1 jAi
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Strength & Weakness of HF method(s)

e Hartree-Fock solution

@ Truly ab initio : start from scratch

@ Reasonable first-order solution

© Mono-electronic & mono-determinantal wf
© Electronic repulsions treated as " mean-field”

— NO electron correlation ! ...almost no

o Post-Hartree-Fock methods
Configuration Interaction (ClI)

WE(x1, X0, . .y Xn) = YHF + 50, G

with %/ : single-, di-, ... excitations

@ Correlated method E. = E* — ENF

& Restricted to "small” systems
CPU-time increases in n°~ (or even n!)

& No explicit Cl procedure for solid state
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Hartree-Fock limit
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|
Main idea of DFT

Use the electron density p(r) = p(F) as the basic variable, instead of the n-electron wave-function

wn(le cee 7Xn)

e The electron density is defined as :

p(n) = n// | Yn(x1,. .., Xn) |2 doyi,dxo, ..., dx,
e |t corresponds to the probability of finding one electron of arbitrary spin in the volume

element dr around r; whatever is the position / spin of all other electrons.

e |t is an observable that can be measured experimentally
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|
Main idea of DFT

Use the electron density p(r) = p(F) as the basic variable, instead of the n-electron wave-function
d’n(XL e 7X”)

e The electron density is defined as :

P(”l):”/-~~/|111n(X1,...,Xn) |2 doy, dxo, . . ., dxn

e |t corresponds to the probability of finding one electron of arbitrary spin in the volume
element dr around r; whatever is the position / spin of all other electrons.

e |t is an observable that can be measured experimentally
e It integrates to the total number of electrons [ p(r)dr = n.

e It vanishes at infinity : p(r — c0) =0

e |ts asymptotic exponential decay away from all nuclei is linked to the lonization Potential
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Hohenberg and Kohn (1964)

The GROUND-STATE properties of any system of n-interacting particles are rigourously deduced
from the electron density distribution p(r)

e Theorem HK1 There is a unique correspondence v(r) «— p(r)

Elel = [ p(v(n)dr + Fucl]

1
Universal function (T [p] + Vee[p])

e Theorem HK2 pex(r) minimizes E|[p]

£l = min { Fuclil + [ o) |
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Energy Density Functional

Elpl = T [p] + Veelp] +/ v(r)p(r)dr
1
Frklp]

> Expression of Fyk[p] ?

@nlol | T | ¢alel) = Tlp]

(@nlo] | Vee | $ulp]) = Veelp]

> Need a link between ¢,[p] and p(F)
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Link between 1, and p(7): the Density Operator 4,

”?n :| ¢n(X1,X2, e 7X!1)><¢’7(X{7 Xé? R X;,) |

> Density matrix in the N-particles configurations space

Y = Pn(X1, X2, - -, Xn )W (X, Xy oy XP)

lth

> l-electron (1%-order) Reduced Density Matrix

’71("1; I‘{) = n/1/1n(X1,X274 o 7Xn)'¢);(X]I_’X27 s ,Xn)do'ldeZa' . '7an

yi(r;n) = n/ | Yn(x1,x2,. .., %n) |2 doy,dxa, ..., dx,

1

Diagonal p(r1) = p1(r1) : Probability to find one electron in r; with arbitrary spin o1

/p(rl)drl =n
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N ——
Link between 1, and p(7): the Density Operator 4,

> 2-electron (2"-order) Reduced Density Matrix:

n(

n—1
Yar, rirf, ) = ?)/"1[’:()(1’)(2"-~aXn)'(f)n(X{vXév“-7Xn)d0'17d0'21dx37-~7dxn

n(n—1
v2(rL, r2, 1, ) = %/ | Yn(x1, %0, xn) |2 dot, doa, dxs, .. ., dxn

1

Diagonal p2(r1, r2) : Probability to find e-pair in ri, r» with arbitrary spin o1, 02

1
//Pz(fl,rz)drl dry = 5n(n —1)
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Energy Decomposition
Ell =

[ 199 e+ [voptrdr + 5 [ [ 250
T[p] unknown
~1(r, r") unknown

p2(r,r')

dr dr’
[ r—r"]
Vie[p] known

We are still left with the many-body problem

We need a trick to solve this equation

Vee[p] unknown

pa(ri, r2) # p1(r)pi(r2)!
Marie-Liesse Doublet (ICGM)
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N ——
Kohn-Sham Equations

e Use an auxiliary system of n non-interacting particles for which the kinetic energy is known

Ps(x1, 52,5 xn) =| $1¢2. - ¢ | ps(F) = D 1A
i=1

with ¢;(F) = Kohn-Sham orbitals (natural orbitals, occupancy n; =1 or 0)

Tl =301 | 5 V2| 6)

i=1

e The energy functional then writes:

Elp] = Ts[p] + (Tlp] — Ts[p]) + / v(P)p(F)dr + Vee[p]
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Kohn-Sham Equations

e The bielectronic part Vee[p]

Veelp] = // ‘Pi r1’:2|dr1dr2 // ‘:l)p(r dndre
1—n 1—n

p1(ryt) = conditional probability (e(2) in r» given that e(1) in r1)

e The exchange-correlation hole : hole created around e(1) to avoid e(2)

p(r)a(ry')

p(r) {p(rz) +p5°'(n, f2)}

Veelr] Jlpl + ex[ol
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Kohn-Sham Equations

EWl = T+ [ vodp(r)dr+ J06]+ { Tl - Talel + 2ol }

T+ / v(R)p(r)dr + J1] + Exelp]

e The KS linear equations :

OEyc [P]
9p(r)

HAE"‘lJn(rl;-n,rn): En'l/Jn(rlz---arn) ch(r):
n
2
Z 7V + Ver(r) [ & = Ze, i(r o Local potential !

i=1
1

o Contains correction to Ts[p]

Vesr(r) = v(r) + / >

Marie-Liesse Doublet (ICGM)

o If exact — p*, EZ%[p]
d’ + vxe(r) o Exact shape unkown ...

but limits knov
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N ——
Kohn-Sham Equations

e Why Kohn-Sham equations so interesting?

o Knowledge ¥cs(x1, X2, - . . , Xn) is not required : gain in computational time
o "Similar” to Hartree-Fock mono-electronic equations
o Contain all electronic effects (Kinetic, Coulomb, Exchange and Correlation)

n

S {57+ o) Ze, e

i=1
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N ——
Kohn-Sham Equations

e Why Kohn-Sham equations so interesting?

o Knowledge ¥cs(x1, X2, - . . , Xn) is not required : gain in computational time
o "Similar” to Hartree-Fock mono-electronic equations
o Contain all electronic effects (Kinetic, Coulomb, Exchange and Correlation)

n

S {57+ o) Ze, e

i=1

‘ Applied to the n-independent particle system ‘

I

Ground—State_energy. &lpl and density ps
of the n-interacting particle system
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N ——
Kohn-Sham Equations

e Why Kohn-Sham equations so interesting?

o Knowledge ¥cs(x1, X2, - . . , Xn) is not required : gain in computational time
o "Similar” to Hartree-Fock mono-electronic equations
o Contain all electronic effects (Kinetic, Coulomb, Exchange and Correlation)

n

S {57+ o) Ze, e

i=1

‘ Applied to the n-independent particle system ‘

I

Ground—State_energy. &lpl and density ps
of the n-interacting particle system

e Why Kohn-Sham equations not so interesting?

o Introduce an auxiliary system which can be far from realistic
o KS DFT is mono-determinantal !!
o DFT is a GROUND-STATE theory
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Different flavors of energy functionals (non exhaustive list)

So far, different classes of energy functionals have been developed which mainly differ from the way the
exchange-correlation energy accounts (or not) for the shape of the electron density

Eclol = [ cclolplryar exclpl = £ (0, V0, Ap, )

o Local Density Approximation (LDA) E-PA[p]
e Generalized Gradient Approximation (GGA) EGGA[p, \

e Meta Generalized Gradient Approximation (meta-GGA) EmGGA[p, Vp, Ap]

Other classes of energy functionals have been developed to correct (at least partially) the inherent errors of
DFT functionals due to Vi (r) such as the self-interaction, dispersion, . . .

e Hybrids functionals (DFT+HF, range-separated)
o Self-Interaction corrected functionals (DFT+U, SIC, DFT+HF, range-separated)

e Dispersion corrected functionals (Grimme D2, D3, Tatchenko-Scheffler ...)
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Pure DFT functionals

e Local Density Approximation (LDA)

The exchange-correlation energy of a given particle located at r only depends on the electron
density at this point. LDA assumes a spherical pP°l¢ for exchange and correlation.

EPM) = [ 2oty = [ (40%05] + LML) o)
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Pure DFT functionals

e Local Density Approximation (LDA)

The exchange-correlation energy of a given particle located at r only depends on the electron
density at this point. LDA assumes a spherical pP°l¢ for exchange and correlation.

EL) = [ P lptryr = [ (40%0] + LML) e

o The analytical expression of the exchange energy comes from the Thomas-Fermi-Dirac model

(homogeneous electron gas)
3 /3\3
=7 (2)" [
4 \m

o The analytical expression of the correlation energy comes from an interpolation of quantum Monte
Carlo calculations by Ceperley and Alder (the " Vosko-Wilk-Nusair” functional)

2ol = £(p)
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ELDPA Just for fun ...

A X 2b Q
ELDA w1 AL, 2b, a1
P )= 5 i e

n(x—xo)2 +2(b+2><0)t 1@ ]}

bxg
X(x0)

X(x0) Q " 2x+b

with r. radius of the sphere defined by the effective volume occupied by an electron and

X(x)=x"+bx+c Q= (4c—b)2. ... ..
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(meta) Generalized Gradients Approximation (GGA)

e Introduction of density gradients

GGA functionals seek to improve LDA functionals by adding "non-local” properties of the electron density
but still the exchange-correlation potential remains local vyc(r) !!

EGGA ELDA + fie [p7 Vp]
EPCA = ELPA 4 ficlp, Vi, ]

fxc either fitted on experimental results (wide series of molecules) or deduced from " more
rational” results of full Cl quantum mechanic calculations. Improvement of kinetic energy
with meta-GGA (Ap)

e ES% much more difficult to express than ES¢4

o BP and PBE
Widely used in solid state chemistry/physics
o Perdew-Wang 1991
Known to better reproduce weak interactions
o Lee-Yang-Par 1988
In association with Ef3[p] gives very good results in molecular systems
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Limits of "local” DFT functionals

e LDA
Suppose that p(r) varies smoothly

@ Covalent and diamagnetic ionic solids with weak
electron correlation (s, p-elements) and no Van
der Waals interactions

@ Pretty good description of local properties and
structures
— relative errors wrt experiments generally less
than £ 5 — 10%

© Wrong near the nucleus but partial cancellation
with EA5

cohesive
© Bad description of E.[p] but partial error
cancellation between E, and E.

© Bad asymptotic behavior of v, (7)

Marie-Liesse Doublet (ICGM)

(metal)-GGA

Account for variations of p(r)

lono-covalent solids with d or f elements with
weak electron correlation and no Van der Waals
interactions

Pretty good description of equilibrium structures
even for correlated systems

— relative errors wrt experiments generally less
than + 5%

Underestimated energy gaps in particular for
strongly-correlated systems

- Transition metal oxides are generally metals with
GGA (oups ...) !

- Bad reproduction of magnetic properties
Properties arising from the non locality of Vic[p]
are generally not properly accounted / reproduced
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Beyond "local” DFT Functionals

e DFT+HF Hybrid functionals

Hybrid functionals seek to improve GGA functionals by adding explicit non-local properties of the electron

density through a mixing of EXDFT and EXHF

EHP = aEPFT 1 pEMF 4 cEPFT

N
Q
S

B3LYP LDA HF LDA GGA LDA g
E. = E. talE —E ) +alET —ET) g HF @B97x
B %)
PBEO 1 wr, 3 ree PBE )
E, = ZEX + ZEX + E £ PBEO
HSEO 1 wr 3 _rsE PBE, I PBE g “ el
gHsEs ZEX ) + ZEX ) 4 EPEE () 4 B g HSE06

0 3 6
Interelectronic distance (a.u.)

from Franck Rabilloud (https://sites.google.com /site/franckrabilloud/cours-hf-dft-tddft)
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Beyond "local” DFT Functionals

e Limit of B3LYP

THE JOURNAL OF CHEMICAL PHYSICS 127, 024103 (2007)

Why does the B3LYP hybrid functional fail for metals?

Joachim Paier, Martijn Marsman, and Georg Kresse
Faculty of Physics, Universitit Wien and Center for Computational Materials Science, Sensengasse 8/12, A-
1090 Wien, Austria

(Received 4 April 2007; accepted 14 May 2007; published online 10 July 2007)

The B3LYP hybrid functional has shown to successfully predict a wide range of molecular
properties. For periodic systems, however, the failure to attain the exact homogeneous electron gas
limit as well as the semiempirical construction turns out to be a major drawback of the functional.
We rigorously assess the B3LYP functional for solids through calculations of lattice parameters,
bulk moduli, and thermochemical properties (atomization energies and reaction energies). The
theoretical lattice constants overestimate the experimental ones by approximately 1%, and hence
behave similarly to the PBE gradient-corrected exchange-correlation functional. B3LYP atomization
energies of solids are drastically worse than those of nonempirical hybrid Hartree-Fock/density
functionals (HF/DFT) such as PBEO and HSEO3. These large errors can be traced back to the lack
of a proper description of “free-electron-like” systems with a significant itinerant character (metals
and small gap semiconductors). Similar calculations using the popular semiempirical B3PW91
hybrid functional, which fulfills the uniform electron gas limit, show a clear improvement over
B3LYP regarding atomization energies. Finally, theoretical values for heats of formation for both the
B3LYP as well as the B3APW91 functionals are presented. These document a most likely fortuitously
good agreement with experiment for the B3LYP hybrid functional. © 2007 American Institute of
Phvsics. [DOL: 10.1063/1.27472491
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DFT+U Formalism

e DFT+U formalism

o Large self-interaction error for strongly correlated electrons (d and f)
o Effective on-site correction added to the 3d-orbitals — U = U — J to penalize fractional/double
occupancy of d, f-orbitals — high-spin configurations

EP o, 7] = B[] + EMU(A] — Egeli] = E[o] + £V (7]

Energy
A

dband U

Eqe[R] = Y2 Trin {Tri — 1}

A=leg—e - _ . -
ol Eu,, [7] = L2 Tr(A(1 - 7))
o Ty A(1 — 7) : deviation from idempot
D p—band{ ' > A( fi) : deviation from idempotence
Metal Mott-Hubbard insulator
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Limits of "hybrid" functionals

e DFT / HF

Introduce exact HF exchange

@ Various flavors of hybrid functionals - Just play with them !

© All parameterized | even those that are claimed to be " parameter-free” !

© Quite expensive compared to pure DFT functionals due to bi-electron integrals
@ Generally much better than pure-DFT functionals for strongly correlated systems

e DFT / Hubbard

Introduce the U.¢r parameter

Mainly used to correct energy gaps of transition metal oxides

Also parameterized ! but with a physically meaningfull parameter

As cheap as pure DFT functionals

Generally much better than pure-DFT functionals for strongly correlated systems

SESRORS
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Be careful about over-interpretation

e Density

Density of States (arb. units)

Density of States (arb. units)™

Ay

of States - Gaps

----- GGA — GGAU MnO

—+— Exp. [PES-BIS)

4 2 0 2 4 6
Energy (eV)

eoor GGA —— GGA+U :

—— HSED6 (0.25) " Nio

—— GM.@GGA+U

Energy (eV)
PRB 92, 115118 (2015)

Performances differ from one system to another...

Marie-Liesse Doublet (ICGM)

Density of states/eV, formula unit

O N O MO N O NONO N M

— Total

— Mn

— 0

= %
E EX

+
EXS20.20eV

PBE
EXS-0.00eV

PBESol+U
EXS-0.28eV

PBEsol
EXS-0.00eV

SCAN
EX®-0.43eV

HSE !
ER=1.75eV !
1
"
i
I
[
1

-10 -8

5 4

2

0

Energy (eV)
PRB 93, 045132 (2016)
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Predicted Gap (eV)

Be careful about over-interpretation

e Density of States - Gaps KS or A !
+ A-sol (PBE) 4 t+ A-sol (PBE) N_I_ Sp0,
& HSE06 vo s ® Kohn-Sham (PBE) &' 7
0 sfba. el
FiS2 2 A 4*‘3 A

IR e
X JC N
N
+
s
A
1 2 3 4

Experimental Gap (eV)

Predicted Gap (eV)

Experimental Gap (eV)
PRL 105, 196403 (2010)

T T T T
16 ® PBE A
A HSE03
| = PBED L‘F‘ Ne
8 . At
L LR i
4 A CBN MgO
3 H
3 A
= 2 L L] *InS -
= Apg 0
g s o
E ok . -
ee B g
05 PhTeSi Zn0r 1
- PhS GaAs -
02 pe .
L]
1 1 Il 1 L
05 1 2 4 8 16
Experiment (V)
Kresse et al.

Results strongly depend on the way one computes energy band gaps !
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Strength & Weakness of DFT

e Reaction enthalpies with DFT

1
MX + Li — LIMX  V(x) = = ArG(x)
n

Relative Error in Volume (%)

-10

<y <, <, <
1, A G, %,
%, s, 0, %
o % o v o

E4 7 v E4

o a o &
o . o %
9 Q%

-
%,
0

PRB 82, 075122 (2010)

Sometimes misleading to check the performance of XC-functionals on A,G ...
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Strength & Weakness of DFT

e Formation energies

45
I 0
40
35 i % %\ 2 Valence State
-~ A ~
; 30 * % ”
225 & 5,
S x 8
g2 x  xpureGGA+U kS
= 15 (Wang etal. 02 energy) E 8
[} * Apure GGA+U o
(shifted 02 energy) o
Y o © mixed GGA/GGA+U {'—é <
X % (this work) =
5 x ]
(3 s 12
0 T T T T T T T T J T -
0 5 10 15 20 25 30 35 40 45 42 40 8 6 4 2
Expt. AH (eV/f.u.) Experimental formation enthalpy (eV)

PRB 73, 195107-1-6 (2006)

Several successive approximations ...
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Strength & Weakness of DFT

e Average voltage calculations (Nernst)

02 release T (Celsius)

V(x) = —%A,G(x)

. e fit
2500{%8 o g2 %0 00 ® o loe :
bor oo i
g & ol eum @, o oosi
2000fe ©* %o, ceB

'4%3‘ 00 080 o 000 3

3000s® 3

1500 o s

b

%

1000 g

s

3

500
o
Minetlcy 7 3 4 5 kinetig 5 25 35 a0 P )
Voltage (V) Voltage (V)
PCCP 17, 5942-5953 (2015)
Does one need so many calculations?...(see tomorrow)
oy 3 =), «=» =T 9AC

ublet (ICGM)




Conclusion

e Never forget that DFT is a GROUND-STATE theory

o Widely used in condensed matter
o Numerically efficient (several hundreds of atoms/unit cell)
o Quite accurate equilibrium properties

e Never forget that XF-functionals are not exact but non-local or parameterized ...

o Check trends rather than seeking for absolute energies / properties
o Compare DFT results with experiments ONLY IF they are comparable...

Never forget that low-energy properties of materials are mainly governed / dictated
by crystal structures and local chemical bonding !
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Interesting paper

Fig. 1 The historical trends in maximal deviation of the density produced by various DFT
methods from the exact one.

A B
0.07 . s
0.06 5
. g
13 -
s 3
Qo.0s o e
[ €
<
x 8
5 g
1
Eoo0s <§'
2
A =
0.02 s T :
. e .. o L
1980 1990 2000 2010 1974-79 1980-89 1990-99 2000-09 2010-15
Year riod
Rung = LDA + GGA = mGGA 4 hGGA' ¢ hGGA Ml o RHo) [l 0 @RD) | €D (LR) [ Energy

Michael G. Medvedev et al. Science 2017;355:49-52
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