
Introduction to Density Functional Theory

Marie-Liesse Doublet

Institut Charles Gerhardt, CNRS - Université Montpellier
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Take-Home Message

As for any other QM-based method the important message to keep in mind is : Accuracy is less
important than Pertinence...

Be aware of each method strength and weakness is crucial

• to choose the appropriate method for the system / property of interest

• not to over-interpret the (non exact) results
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Schrödinger Equation (1926)

• Born-Oppenheimer approximation : Ĥ(ri ,Rα) ≡ Ĥel
Rα

(ri )

• Time-independent (non-relativistic) Schrödinger equation

Ĥel ψn(x1, x2, . . . , xn) = En ψn(x1, x2, . . . , xn)

Ĥel = −
1

2

n∑
i=1

∇2
i −

n∑
i=1

∑
α

Zα

riα
+

n∑
i=1

∑
j>i

1

rij

• ψn(x1, x2, . . . , xn) : n-particles wave function xi = ri (xi , yi , zi )⊗ σi (± 1
2

)

• Electronic energy : functional of ψn

En[ψn] =
〈 ψn(x1, . . . , xn) | Ĥel | ψn(x1, . . . , xn) 〉
〈 ψn(x1, . . . , xn) | ψn(x1, . . . , xn) 〉

• ψn and En[ψn] −→ all thermodynamic properties
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How to Solve Schrödinger Equation?

Mono-electronic approximation

ψn(x1, . . . , xn) : antisymmetrized product of mono-electronic functions φi (MOs)

ψn(x1, . . . , xn) ∼ A
n∏
i

φi (xi )

ψn(x1, x2, . . . , xn) =
1
√

n!

φ1(x1) φ2(x1) . . . φn(x1)
φ1(x2) φ2(x2) . . . φn(x2)

...
...

...
...

φ1(xn) φ2(xn) . . . φn(xn)

=| φ1, φ3, . . . , φn |

Mean-Field approximation

Ĥel =
n∑

i=1

− 1

2
∇2

i −
∑
α

Zα

riα
+

1

2

∑
j 6=i

1

rij

 =
n∑

i=1

ĥi +
1

2

∑
j 6=i

V̂ij

 =
n∑

i=1

F̂i

−→ The Hartree-Fock method (1928 - 1930)
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The Hartree-Fock method 1928-1930

Hel =
n∑

i=1

ĥi +
1

2

∑
j 6=i

V̂ij

 =
n∑

i=1

ĥi +
1

2

∑
j 6=i

{
Ĵj − K̂j

}
. Coulomb (Ĵj ) and Exchange (K̂j ) space operators

Ĵ2 φi (r1) =

∫
φ
∗
j (r2)

1

r12
φj (r2)dr2 φi (r1) J12 =

∫ ∫
φ
∗
i (r1)φ∗j (r2)

1

r12
φi (r1)φj (r2)dr2dr1

K̂2 φi (r1) =

∫
φ
∗
j (r2)

1

r12
φi (r2)dr2 φj (r1) K12 =

∫ ∫
φ
∗
i (r1)φ∗j (r2)

1

r12
φj (r1)φi (r2)dr2dr1

. two-electron integrals : tough and time-consuming task !

. more important : action depends on the solution !
→ self-consistent solution (iterative procedure)

• Energy Decomposition

E HF
n [ψn] =

n∑
i=1

εi +
1

2

n∑
i=1

∑
j 6=i

(Jij −Kij )
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Strength & Weakness of HF method(s)

• Hartree-Fock solution
⊕ Truly ab initio : start from scratch
⊕ Reasonable first-order solution
	 Mono-electronic & mono-determinantal wf
	 Electronic repulsions treated as ”mean-field”

−→ NO electron correlation ! ...almost no

• Post-Hartree-Fock methods
Configuration Interaction (CI)

Ψex
n (x1, x2, . . . , xn) = ψHF

n +
∑

i Ciψ
∗
n

with ψ∗i : single-, di-, . . . excitations

⊕ Correlated method Ec = E ex − E HF

	 Restricted to ”small” systems
CPU-time increases in n5−7 (or even n!)

	 No explicit CI procedure for solid state
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Main idea of DFT

Use the electron density ρ(r) = ρ(~r) as the basic variable, instead of the n-electron wave-function
ψn(x1, . . . , xn)

• The electron density is defined as :

ρ(r1) = n

∫
. . .

∫
| ψn(x1, . . . , xn) |2 dσ1, dx2, . . . , dxn

• It corresponds to the probability of finding one electron of arbitrary spin in the volume
element dr around r1 whatever is the position / spin of all other electrons.

• It is an observable that can be measured experimentally

• It integrates to the total number of electrons
∫
ρ(r)dr = n.

• It vanishes at infinity : ρ(r −→∞) = 0

• Its asymptotic exponential decay away from all nuclei is linked to the Ionization Potential

Marie-Liesse Doublet (ICGM) DFT February 8, 2018 7 / 32



Main idea of DFT

Use the electron density ρ(r) = ρ(~r) as the basic variable, instead of the n-electron wave-function
ψn(x1, . . . , xn)

• The electron density is defined as :

ρ(r1) = n

∫
. . .

∫
| ψn(x1, . . . , xn) |2 dσ1, dx2, . . . , dxn

• It corresponds to the probability of finding one electron of arbitrary spin in the volume
element dr around r1 whatever is the position / spin of all other electrons.

• It is an observable that can be measured experimentally

• It integrates to the total number of electrons
∫
ρ(r)dr = n.

• It vanishes at infinity : ρ(r −→∞) = 0

• Its asymptotic exponential decay away from all nuclei is linked to the Ionization Potential

Marie-Liesse Doublet (ICGM) DFT February 8, 2018 7 / 32



Hohenberg and Kohn (1964)

The Ground-State properties of any system of n-interacting particles are rigourously deduced
from the electron density distribution ρ(r)

• Theorem HK1 There is a unique correspondence v(r)←→ ρ(r)

Ev [ρ] =

∫
ρ(r)v(r)dr + FHK [ρ]

↓
Universal function (T [ρ] + Vee [ρ])

• Theorem HK2 ρex(r) minimizes E [ρ]

Ev [ρ] = min
ρ

{
FHK [ρ] +

∫
ρ(r)v(r)

}
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Energy Density Functional

E [ρ] = T̂ [ρ] + V̂ee [ρ]︸ ︷︷ ︸
↓

+

∫
v(r)ρ(r)dr

FHK [ρ]

. Expression of FHK [ρ] ?

〈ψn[ρ] | T̂ | ψn[ρ]〉 = T [ρ]

〈ψn[ρ] | V̂ee | ψn[ρ]〉 = Vee [ρ]

. Need a link between ψn[ρ] and ρ(~r)
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Link between ψn and ρ(~r): the Density Operator γ̂n

γ̂n =| ψn(x1, x2, . . . , xn)〉〈ψn(x ′1, x
′
2, . . . , x

′
n) |

. Density matrix in the N-particles configurations space

γn = ψn(x1, x2, . . . , xn)ψ∗n (x ′1, x
′
2, . . . , x

′
n)

. 1-electron (1th-order) Reduced Density Matrix

γ1(r1; r ′1) = n

∫
ψn(x1, x2, . . . , xn)ψ∗n (x ′1, x2, . . . , xn)dσ1, dx2, . . . , dxn

γ1(r1; r1) = n

∫
| ψn(x1, x2, . . . , xn) |2 dσ1, dx2, . . . , dxn

↓
Diagonal ρ(r1) = ρ1(r1) : Probability to find one electron in r1 with arbitrary spin σ1

∫
ρ(r1)dr1 = n
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Link between ψn and ρ(~r): the Density Operator γ̂n

. 2-electron (2nd -order) Reduced Density Matrix:

γ2(r1, r2; r ′1, r
′
2) =

n(n − 1)

2

∫
ψ∗n (x1, x2, . . . , xn)ψn(x ′1, x

′
2, . . . , xn)dσ1, dσ2, dx3, . . . , dxn

γ2(r1, r2, r1, r2) =
n(n − 1)

2

∫
| ψn(x1, x2, . . . , xn) |2 dσ1, dσ2, dx3, . . . , dxn

↓
Diagonal ρ2(r1, r2) : Probability to find e-pair in r1, r2 with arbitrary spin σ1, σ2

∫ ∫
ρ2(r1, r2)dr1 dr2 =

1

2
n(n − 1)
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Energy Decomposition

E [ρ] = −
1

2

∫ [
∇2γ1(r , r ′)

]
r=r′ dr +

∫
v(r)ρ(r)dr +

1

2

∫ ∫
ρ2(r , r ′)

| r − r ′ |
dr dr ′

T [ρ] unknown Vne [ρ] known Vee [ρ] unknown
γ1(r , r ′) unknown ρ2(r1, r2) 6= ρ1(r1)ρ1(r2)!

We are still left with the many-body problem ...

We need a trick to solve this equation
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Kohn-Sham Equations

• Use an auxiliary system of n non-interacting particles for which the kinetic energy is known

ψs (x1, x2, . . . , xn) =| φ1φ2 . . . φn | ρs (~r) =
n∑

i=1

| φi (~r) |2

with φi (~r) = Kohn-Sham orbitals (natural orbitals, occupancy ni = 1 or 0)

Ts [ρ] =
n∑

i=1

〈φi | −
1

2
∇2

i | φi 〉

• The energy functional then writes:

E [ρ] = Ts [ρ] + (T [ρ]− Ts [ρ]) +

∫
v(~r)ρ(~r)dr + Vee [ρ]
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Kohn-Sham Equations

• The bielectronic part Vee [ρ]

Vee [ρ] =
1

2

∫ ∫
ρ2(r1, r2)

| r1 − r2 |
dr1dr2 =

1

2

∫ ∫
ρ(r1)ρ̃(r r1

2 )

| r1 − r2 |
dr1dr2

ρ̃1(r
r1
2 ) = conditional probability (e(2) in r2 given that e(1) in r1)

• The exchange-correlation hole : hole created around e(1) to avoid e(2)

ρ(r1)ρ̃(r r1
2 ) = ρ(r1)

{
ρ(r2) + ρhole

2 (r1, r2)
}

Vee [ρ] = J[ρ] + εhole
xc [ρ]
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Kohn-Sham Equations

E [ρ] = Ts [ρ] +

∫
v(r)ρ(r)dr + J[ρ] +

{
T [ρ]− Ts [ρ] + εhole

xc [ρ]
}

Ts [ρ] +

∫
v(r)ρ(r)dr + J[ρ] + Exc [ρ]

• The KS linear equations :

Ĥelψn(r1; . . . , rn) = Enψn(r1, . . . , rn)

n∑
i=1

1

2
∇2

i + Veff(r)︸ ︷︷ ︸
↓

φi =
n∑

i=1

ei φi (r)

Veff(r) = v(r) +

∫
ρ(r ′)

| r − r ′ |
dr ′ + vxc (r)

vxc (r) =
∂Exc [ρ]

∂ρ(r)

◦ Local potential !

◦ Contains correction to Ts [ρ]

◦ If exact → ρex ,E ex
KS [ρ]

◦ Exact shape unkown ... but limits known
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Kohn-Sham Equations

• Why Kohn-Sham equations so interesting?
◦ Knowledge ψGS (x1, x2, . . . , xn) is not required : gain in computational time
◦ ”Similar” to Hartree-Fock mono-electronic equations
◦ Contain all electronic effects (Kinetic, Coulomb, Exchange and Correlation)

n∑
i=1

{
−

1

2
∇2

i + Veff(r)

}
φi (r) =

n∑
i=1

εi φi (r)

Applied to the n-independent particle system

⇓

Ground-State energy E ex
GS [ρ] and density ρex

GS
of the n-interacting particle system

• Why Kohn-Sham equations not so interesting?
◦ Introduce an auxiliary system which can be far from realistic
◦ KS DFT is mono-determinantal !!
◦ DFT is a Ground-State theory
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Different flavors of energy functionals (non exhaustive list)

So far, different classes of energy functionals have been developed which mainly differ from the way the
exchange-correlation energy accounts (or not) for the shape of the electron density

Exc [ρ] =

∫
εxc [ρ]ρ(r)dr εxc [ρ] = f (ρ,∇ρ,∆ρ, . . .)

• Local Density Approximation (LDA) E LDA[ρ]

• Generalized Gradient Approximation (GGA) E GGA[ρ,∇ρ]

• Meta Generalized Gradient Approximation (meta-GGA) E mGGA[ρ,∇ρ,∆ρ]

. . .

Other classes of energy functionals have been developed to correct (at least partially) the inherent errors of
DFT functionals due to Veff (r) such as the self-interaction, dispersion, . . .

• Hybrids functionals (DFT+HF, range-separated)

• Self-Interaction corrected functionals (DFT+U, SIC, DFT+HF, range-separated)

• Dispersion corrected functionals (Grimme D2, D3, Tatchenko-Scheffler ...)
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Pure DFT functionals

• Local Density Approximation (LDA)

The exchange-correlation energy of a given particle located at r only depends on the electron
density at this point. LDA assumes a spherical ρhole for exchange and correlation.

E LDA
xc [ρ] =

∫
εLDA

xc [ρ]ρ(r)dr =

∫ (
εLDA

x [ρ] + εLDA
c [ρ]

)
ρ(r)dr

◦ The analytical expression of the exchange energy comes from the Thomas-Fermi-Dirac model
(homogeneous electron gas)

ε
LDA
x [ρ] =

3

4

(
3

π

)1/3 ∫
ρ

4/3(r)dr

◦ The analytical expression of the correlation energy comes from an interpolation of quantum Monte
Carlo calculations by Ceperley and Alder (the ”Vosko-Wilk-Nusair” functional)

ε
LDA
c [ρ] = f (ρ)
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ELDA
c Just for fun ...

E LDA
c [ρ] → ε

VWN
c [rs ] =

A

2

{
ln

x

X (x)
+

2b

Q
tan−1 Q

2x + b

−
bx0

X (x0)

[
ln

(x − x0)2

X (x0)
+ 2

(b + 2x0)

Q
tan−1 Q

2x + b

]}
with rs radius of the sphere defined by the effective volume occupied by an electron and

X (x) = x2 + bx + c Q = (4c − b2)1/2
. . . . . .
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(meta) Generalized Gradients Approximation (GGA)

• Introduction of density gradients

GGA functionals seek to improve LDA functionals by adding ”non-local” properties of the electron density

but still the exchange-correlation potential remains local vxc (r) !!

E GGA
x = E LDA

x + fxc [ρ,∇ρ]

E mGGA
x = E LDA

x + fxc [ρ,∇ρ,∆ρ]

fxc either fitted on experimental results (wide series of molecules) or deduced from ”more
rational” results of full CI quantum mechanic calculations. Improvement of kinetic energy
with meta-GGA (∆ρ)

• E GGA
c much more difficult to express than E GGA

x

◦ BP and PBE
Widely used in solid state chemistry/physics

◦ Perdew-Wang 1991
Known to better reproduce weak interactions

◦ Lee-Yang-Par 1988
In association with E B3

x [ρ] gives very good results in molecular systems
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Limits of ”local” DFT functionals

• LDA

Suppose that ρ(r) varies smoothly

⊕ Covalent and diamagnetic ionic solids with weak
electron correlation (s, p-elements) and no Van
der Waals interactions

⊕ Pretty good description of local properties and
structures

→ relative errors wrt experiments generally less
than ± 5− 10%

	 Wrong near the nucleus but partial cancellation
with E AB

cohesive

	 Bad description of Exc [ρ] but partial error
cancellation between Ex and Ec

	 Bad asymptotic behavior of vxc (~r)

. . .

• (metal)-GGA

Account for variations of ρ(r)

⊕ Iono-covalent solids with d or f elements with
weak electron correlation and no Van der Waals
interactions

⊕ Pretty good description of equilibrium structures
even for correlated systems

→ relative errors wrt experiments generally less
than ± 5%

	 Underestimated energy gaps in particular for
strongly-correlated systems

- Transition metal oxides are generally metals with
GGA (oups ...) !

- Bad reproduction of magnetic properties

	 Properties arising from the non locality of Vxc [ρ]

are generally not properly accounted / reproduced

. . .
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Beyond ”local” DFT Functionals

• DFT+HF Hybrid functionals

Hybrid functionals seek to improve GGA functionals by adding explicit non-local properties of the electron

density through a mixing of E DFT
x and E HF

x

E Hyb
xc = aE DFT

x + bE HF
x + cE DFT

c

E B3LYP
xc = E LDA

xc + a0(E HF
x − E LDA

x ) + ax (E GGA
x − E LDA

x )

+ac (E GGA
c − E LDA

c )

E PBE0
x =

1

4
E HF

x +
3

4
E PBE

x + E PBE
c

E HSE06
xc =

1

4
E HF,sr

x (µ) +
3

4
E PBE,sr

x µ) + E PBE,lr
x (µ) + E PBE

c

from Franck Rabilloud (https://sites.google.com/site/franckrabilloud/cours-hf-dft-tddft)
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Beyond ”local” DFT Functionals

• Limit of B3LYP
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DFT+U Formalism

• DFT+U formalism
◦ Large self-interaction error for strongly correlated electrons (d and f )
◦ Effective on-site correction added to the 3d-orbitals → Ueff = U − J to penalize fractional/double

occupancy of d, f -orbitals → high-spin configurations

E LDA+U [ρ, ñ] = E LDA[ρ] + E Hub [ñ]− Edc [ñ] = E LDA[ρ] + E Ueff [ñ]

Edc [ñ] = U−J
2

Trñ {Trñ − 1}

EUeff
[ñ] = U−J

2
Tr{ñ(1− ñ)}

ñ(1− ñ) : deviation from idempotence
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Limits of ”hybrid” functionals

• DFT / HF
Introduce exact HF exchange

⊕ Various flavors of hybrid functionals - Just play with them !
	 All parameterized ! even those that are claimed to be ”parameter-free” !
	 Quite expensive compared to pure DFT functionals due to bi-electron integrals
⊕ Generally much better than pure-DFT functionals for strongly correlated systems

• DFT / Hubbard
Introduce the Ueff parameter

⊕ Mainly used to correct energy gaps of transition metal oxides
	 Also parameterized ! but with a physically meaningfull parameter
⊕ As cheap as pure DFT functionals
⊕ Generally much better than pure-DFT functionals for strongly correlated systems
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Be careful about over-interpretation

• Density of States - Gaps

PRB 92, 115118 (2015) PRB 93, 045132 (2016)

Performances differ from one system to another...
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Be careful about over-interpretation

• Density of States - Gaps KS or ∆ !

PRL 105, 196403 (2010) Kresse et al.

Results strongly depend on the way one computes energy band gaps !
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Strength & Weakness of DFT

• Reaction enthalpies with DFT

MX + Li −→ LiMX V (x) = −
1

nF
∆r G(x)

PRB 82, 075122 (2010)

Sometimes misleading to check the performance of XC-functionals on ∆r G ...
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Strength & Weakness of DFT

• Formation energies

MOy −→ M0 +
y

2
O2

PRB 73, 195107-1-6 (2006)

Several successive approximations ...
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Strength & Weakness of DFT

• Average voltage calculations (Nernst)

V (x) = −
1

nF
∆r G(x)

PCCP 17, 5942-5953 (2015)

Does one need so many calculations?...(see tomorrow)
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Conclusion

• Never forget that DFT is a Ground-State theory
◦ Widely used in condensed matter
◦ Numerically efficient (several hundreds of atoms/unit cell)
◦ Quite accurate equilibrium properties

• Never forget that XF-functionals are not exact but non-local or parameterized ...
◦ Check trends rather than seeking for absolute energies / properties
◦ Compare DFT results with experiments Only If they are comparable...

Never forget that low-energy properties of materials are mainly governed / dictated
by crystal structures and local chemical bonding !

Marie-Liesse Doublet (ICGM) DFT February 8, 2018 31 / 32



Interesting paper

Fig. 1 The historical trends in maximal deviation of the density produced by various DFT 
methods from the exact one. 

Michael G. Medvedev et al. Science 2017;355:49-52 

Published by AAAS 
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