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Global outline (Lectures II, and III)

III- Determination of nucl. and mag. structures from neutron diffraction
Nuclear and magnetic neutron diffraction: structure factors, extinction rules

Examples in powder neutron diffraction

Examples in single-crystal neutron diffraction

II- Magnetic structures
Description in terms of propagation vector: the various orderings, examples

Description in terms of symmetry: 

Magnetic point groups: time reversal, the 122 magnetic point groups

Magnetic lattices: translations and anti-translations, the 36 magnetic lattices

Magnetic space groups = Shubnikov groups

Some material from: J. Rodriguez-Carvajal, L. Chapon and M. Perez-Mato was used to 
prepare Lectures II and III

Interest of magnetic structure determination ?

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Multiferroics

Methods and Computing Programs

Superconductors

Interest of magnetic structure determination

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Interest of magnetic structure determination

3Heavy Fermions

Nano particles

Multiferroics

Manganites, 
charge ordering
orbital ordering

Computing
Methods

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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1. What is a magnetic structure ?

A crystallographic structure consists in a long-range order of atoms, described by a 
unit cell, a space group, and atomic positions of the asymmetry unit. 

A magnetic structure corresponds to the long range ordering of “magnetic 
moments” or “spins”. 

These “magnetic moments” or “spins” correspond to the spin of the unpaired electrons  

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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1. What is a magnetic structure ?

These “magnetic moments” or “spins” correspond to the spin of the unpaired electrons  

Example Ni2+ 3d8 in an octahedral environment

t2g

eg
Hund’s 
and Pauli’s 
rules

This is represented as a magnetic moment 
carried by Ni2+

𝑚 = −𝑔𝐽 𝜇𝐵  𝐽 (rare earths)

𝑚 = −𝑔𝑆 𝜇𝐵  𝑆 (transition metals)
𝜇𝐵 =

𝑞ħ

2𝑚𝑒

2 unpaired electrons ⇒ 𝑆 = 1

𝑚 = 2 𝜇𝐵

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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1. What is a magnetic structure ?

paramagnetic state ferromagnetic state antiferromagnetic state
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Curie-Weiss: 𝝌 =
𝑪

𝑻−𝜽𝑪𝑾
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CW = 0 CW > 0 CW < 0

TCurie

TNéel

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

<  𝑆𝑖 >= 0
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What is a magnetic structure ?

ferrimagnetic state

When different magnetic atoms 
(or different oxidation states 
for the same atom)
=> Non-zero total magnetic moment

There are also plenty of more 
complex magnetic structures, 
arising e. g. from frustration : 
Helical
Sinusoidal
Incommensurate …

Knowing a magnetic structure means being able to say, in whatever 
magnetic atom of whatever unit cell, what is the direction and value 
of the magnetic moment

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Tools to describe a magnetic structure ?

There exist 2 approaches:

 Group representation theory applied to conventional crystallographic space 

groups and using the concept of propagation vector 𝒌

→ the most general (any 𝑘 vectors, incommensurate ones included)

 Magnetic symmetry approach: symmetry invariance of magnetic configurations 
(Magnetic Space Groups, often called Shubnikov groups) 

→ only 𝑘 = 0, 𝑘 =
1

2
𝐻, or 𝑘 = 𝐻

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Béatrice Grenier in the second part of this talk
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2. Propagation vectors formalism to describe a magnetic structure

The position of atom 𝑗 in unit-cell 𝑙
is given by:

𝑅𝑙𝑗 = 𝑅𝑙 +  𝑟𝑗

Where 𝑅𝑙 is a pure lattice 
translation

Arbitrary origin of the lattice 

𝒎𝐥𝐣

𝑹𝒍𝒋𝑹𝒍

𝒓𝒋

Whatever kind of magnetic structure in a crystal can be described 

mathematically by using a Fourier series

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙)

𝑅𝑙𝑗
= 𝑅𝑙 +  𝑟𝑗 = 𝑙1  𝑎 + 𝑙2 𝑏 + 𝑙3  𝑐 + 𝑥𝑗  𝑎 + 𝑦𝑗 𝑏 + 𝑧𝑗  𝑐

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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𝒌 is a vector belonging to the Reciprocal Lattice

The reciprocal lattice is defined as a network of points in the Fourier space (𝑄-space) 

which are the extremities of vectors: 𝐻 = ℎ  𝑎⋆ + 𝑘𝑏⋆ + 𝑙  𝑐⋆

with  𝑎⋆, 𝑏⋆, and  𝑐⋆ the unit vectors of the reciprocal lattice, and ℎ, 𝑘, 𝑙 integers.

where 𝐶 is a constant 
and 𝑉 is the volume of the unit cell 
in direct space:

𝑉 =  𝑎, 𝑏,  𝑐 =  𝑎 × 𝑏 .  𝑐 =  𝑎. (𝑏 ×  𝑐)

In solid state physics, 𝐶 = 2𝜋
In crystallography, 𝐶 = 1

10

for C = 1 

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

 𝑎⋆ = 𝐶
𝑏 ×  𝑐

𝑉
→  𝑎⋆ ⊥ 𝑏 and  𝑐

𝑏⋆ = 𝐶
 𝑐 ×  𝑎

𝑉
→ 𝑏⋆ ⊥  𝑎 and  𝑐

 𝑐⋆ = 𝐶
 𝑎 × 𝑏

𝑉
→  𝑐⋆ ⊥  𝑎 and 𝑏

 𝑎⋆.  𝑎 = 𝑏⋆. 𝑏 =  𝑐⋆.  𝑐 = 1

 𝑎⋆. 𝑏 =  𝑎⋆.  𝑐 = 0

𝑏⋆.  𝑎 = 𝑏⋆.  𝑐 = 0

 𝑐⋆.  𝑎 =  𝑐⋆. 𝑏 = 0
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Propagation vector formalism

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙)

meaning of the propagation vector : analogy with plane waves 

The propagation vector 𝑘 of a magnetic 
structure reflects:

- its periodicity 𝐿 (𝑘 = 1/𝐿)
- the direction it propagates

For a magnetic atom 𝑗, the magnetic moments 𝑚𝑙𝑗 (cell 𝑙) form planes of 

parallel moments that are perpendicular to the direction of the propagation 
vector

𝑘

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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1. Propagation vectors formalism ; 𝒌 = (0, 0, 0)

Let us examine the simple case 𝑘= (0, 0, 0)

In this case the magnetic cell is 
the same as the nuclear cell

12

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙)

𝑚𝑙𝑗 =  𝑆𝑘𝑗 ; both are real

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Remark : any ferromagnetic structure 

has 𝑘 = (0,0,0)

However the reverse is not true. 

Many AF structures have 𝑘 = (0,0,0)

13

Propagation vectors formalism ; 𝒌 = (0, 0, 0)

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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A notation useful in perovskites

Constraints on the directions and couplings 
given by symmetry analysis (see later)

14

1 2

3

𝑃𝑛𝑚𝑎, position 4𝑏

4

F = + + + +

A = + − − +

C = + + − −

G = + − + −

Moussa et al., 10.1103/PhysRevB.54.15149

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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2. Note on centered cells: C-centered cell

𝑘 = (0, 0, 0) ? 𝑘 = (1, 0, 0)

15

𝑏
 𝑐

 𝑎

𝑚1 = +𝑚 𝑢
𝑚2 = +𝑚 𝑢

𝑚1 = +𝑚 𝑢

𝑚2 = +𝑚𝑒−2𝑖𝜋( 1,0,0 .(
1
2,
1
2,0)) 𝑢

𝑚2 = +𝑚𝑒−2𝑖𝜋
1
2 𝑢

𝑚2 = −𝑚 𝑢

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙)

1

2

1

2

For centered cells, we sum over atoms 𝑗 of 

the primitive cell and values of 𝑘 may be >
1

2

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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3. Propagation vector formalism ; 𝒌 = ½ 𝑯

The structure is antiferromagnetic

The magnetic symmetry may also be described using Shubnikov magnetic 

space groups  

The propagation vector is a special 

point of the Brillouin Zone surface 

and 𝑘 = ½ 𝐻, where 𝐻 is a 

reciprocal lattice vector.  

16

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙) =  𝑆𝑘𝑗 𝑒

−𝑖𝜋(𝐻.𝑅𝑙) =  𝑆𝑘𝑗 (−1)
𝑛𝑙

𝑚𝑙𝑗 = 𝑚0𝑗 (−1)
𝑛𝑙

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Example (see Figure): 𝑘 = 0,
1

2
, 0 ⇒ 𝑚𝑙𝑗 = 𝑚0𝑗 −1 𝑙2

𝑥

 𝑎
𝑏

 𝑐

𝑅𝑙 = 𝑙1  𝑎 + 𝑙2𝑏 + 𝑙3  𝑐
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First magnetic neutron diffraction experiments: MnO

17

MnO structure
𝑎 = 4.45 Ǻ

𝐹𝑚 3𝑚

𝑘 =
1

2
,
1

2
,
1

2

a b

c

a b

c

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Note: what about 𝑘2 =
 1

2
,
1

2
,
1

2
, 𝑘3 =

1

2
,
 1

2
,
1

2
and 𝑘4 =

1

2
,
1

2
,
 1

2
? 

𝑘1 and 𝑘2 are equivalent if 𝑘2 − 𝑘1 is a reciprocal lattice vector 𝐻

First magnetic neutron diffraction experiments: MnO

𝑘1 =
1

2
,
1

2
,
1

2

This is not a reciprocal lattice vector 
(lattice F), therefore these 4 propagation 
vectors are not equivalent 
=> they constitute the star of k-vectors. 

Single-crystal: 4 different 𝑘 −domains

Are they equivalent ? 

a b

c

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝑘2 − 𝑘1 =
 1

2
,
1

2
,
1

2
−

1

2
,
1

2
,
1

2
=  1, 0, 0
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Note on multi-𝒌 structures

Example 1: SrHo2O4

Holmium distributed on 2 sites Ho1, Ho2

𝑘1 = 0, 0, 0

𝑘2 = 0, 0,
1

2

𝒌𝟐 = 𝟎, 𝟎,
𝟏

𝟐

𝒌𝟏 = 𝟎, 𝟎, 𝟎

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Note on multi-𝒌 structures

Example 2: TbMg

Tb is the magnetic ion

𝒌𝟐 = 𝟎, 𝟎,
𝟏

𝟐𝒌𝟏 = 𝟎, 𝟎, 𝟎
 𝑐

 𝑎

This allows a canting
(net ferromagnetic 
component)

+

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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𝑘 and −𝑘 should be considered (𝑘 and −𝑘 are not equivalent)

4. Propagation vectors formalism: 𝒌 inside Brillouin zone

six parameters are 

independent

21

𝑚𝑙𝑗 =  

𝑘

 𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙)

𝑚𝑙𝑗 =  𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙) +  𝑆−𝑘𝑗 𝑒

−2𝑖𝜋(−𝑘.𝑅𝑙)

 𝑆𝑘𝑗 =
1

2
𝑅𝑒𝑘𝑗 + 𝑖 𝐼𝑚𝑘𝑗 𝑒

−2𝑖𝜋𝜑
𝑘𝑗

2 simple cases: 

1) Real  𝑆𝑘𝑗 :  𝑆𝑘𝑗 =
1

2
𝑅𝑒𝑘𝑗 𝑒

−2𝑖𝜋𝜑
𝑘𝑗

2)  Imaginary component 𝐼𝑚𝑘𝑗 perpendicular to the real one (𝑅𝑒𝑘𝑗)

Necessary condition for real 𝑚𝑙𝑗:  𝑆−𝑘𝑗 =  𝑆𝑘𝑗*

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Sinusoidal magnetic structures

22

𝑚𝑙𝑗 =  𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙) +  𝑆−𝑘𝑗 𝑒

−2𝑖𝜋(−𝑘.𝑅𝑙)  𝑆𝑘𝑗 =
1

2
𝑅𝑒𝑘𝑗 𝑒

−2𝑖𝜋𝜑
𝑘𝑗

 𝑆𝑘𝑗 =
1

2
𝑚𝑗𝑢𝑗 𝑒

−2𝑖𝜋𝜑
𝑘𝑗

𝑚𝑙𝑗 = 𝑚𝑗𝑢𝑗 cos 2𝜋 𝑘. 𝑅𝑙 + 𝜑𝑘𝑗

𝑘 =
1

12
, 0, 0 ,𝑚 ∥ 𝑏

transverse

𝑘 =
1

12
, 0, 0 , 𝑚 ∥  𝑎

longitudinal

𝑏

 𝑎

𝑏

 𝑎 Example: BaCo2V2O8, see later

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Helical magnetic structures

23

𝑚𝑙𝑗 =  𝑆𝑘𝑗 𝑒
−2𝑖𝜋(𝑘.𝑅𝑙) +  𝑆−𝑘𝑗 𝑒

−2𝑖𝜋(−𝑘.𝑅𝑙)

 𝑆𝑘𝑗 =
1

2
𝑚𝑢𝑗 𝑢𝑗+ 𝑖 𝑚𝑣𝑗  𝑣𝑗 𝑒

−2𝑖𝜋𝜑
𝑘𝑗 𝑤𝑖𝑡ℎ 𝑢𝑗 ⊥ 𝑣𝑗

𝑚𝑙𝑗 = 𝑚𝑢𝑗𝑢𝑗 cos 2𝜋 𝑘. 𝑅𝑙 + 𝜑𝑘𝑗 + 𝑚𝑣𝑗𝑣𝑗 sin 2𝜋 𝑘. 𝑅𝑙 + 𝜑𝑘𝑗

 𝑎

 𝑐

𝑘 ∥  𝑎

𝑚 ∈ (𝑏,  𝑐)

𝑚𝑙𝑗 =
1

2
𝑚𝑢𝑗𝑢𝑗 𝑒

−2𝑖𝜋(𝑘.𝑅𝑙+𝜑𝑘𝑗
)
+𝑒

2𝑖𝜋(𝑘.𝑅𝑙+𝜑𝑘𝑗
)

+ 
1

2
𝑚𝑣𝑗  𝑣𝑗 𝑖 𝑒

−2𝑖𝜋(𝑘.𝑅𝑙+𝜑𝑘𝑗
)
− 𝑒

2𝑖𝜋(𝑘.𝑅𝑙+𝜑𝑘𝑗
)

 𝑆−𝑘𝑗 =
 𝑆
𝑘𝑗
∗ =

1

2
𝑚𝑢𝑗 𝑢𝑗− 𝑖 𝑚𝑣𝑗  𝑣𝑗 𝑒

+2𝑖𝜋𝜑
𝑘𝑗

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Helix (𝒌 ∥ 𝒂𝒙𝒊𝒔) Cycloid (𝒌 ⊥ 𝒂𝒙𝒊𝒔)

axis

k k

kk axis

24Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE



GDR MEETICC
Banyuls, Feb. 2018
GDR MEETICC

Banyuls, Feb. 2018
25

Global outline

II- Magnetic structures
Description in terms of propagation vector: the various orderings, examples

Description in terms of symmetry: 

Magnetic point groups: time reversal, the 122 magnetic point groups

Magnetic lattices: translations and anti-translations, the 36 magnetic lattices

Magnetic space groups = Shubnikov groups

• 𝑘 = 0, 0, 0

• 𝑘 = (1, 0, 0)

• 𝑘 =
1

2
𝐻

• Pair (𝑘,−𝑘) Complex magnetic structures (helical, sinusoidal and more)

Magnetic cell = nuclear cell

Centered cells

Magnetic cell 2 x, 4x, 8x bigger than nuclear cell 

Shubnikov groups

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Tools to describe a magnetic structure ?

Magnetic point groups 
Magnetic lattices 
Magnetic space groups

There exist 2 approaches:

 Group representation theory applied to conventional crystallographic space 

groups and using the concept of propagation vector 𝑘

→ the most general (any 𝑘 vectors, incommensurate ones included)

main purpose of the following

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

tools based on this approach presented at the end of this lecture

but theory not explained at all ("black box")

 Magnetic symmetry approach: symmetry invariance of magnetic configurations 
(Magnetic Space Groups, often called Shubnikov groups) 

→ only 𝑘 = 0, 𝑘 =
1

2
𝐻, or 𝑘 = 𝐻
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Magnetic point groups: Axial vs polar vectors

Effect of the crystallographic point group symmetries 𝜶 on polar and axial vectors

+−

+ −
Proper symmetry operations (det 𝛼 = +1)

2-axis

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Electrical dipole  𝑝
Polar vector

+

−

Magnetic moment 𝑚
Axial vector

(current loop symmetry)

+

−
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Magnetic point groups: Axial vs polar vectors

Magnetic moment 𝑚
Axial vector

Electrical dipole  𝑝
Polar vector

Improper symmetry operations (det 𝛼 = −1)

+

−
+

−
+

−

+−

 1

Inversion

𝑚

+

−

+ −

Mirror plane

Effect of the crystallographic point group symmetries 𝜶 on polar and axial vectors

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic point groups: Spin reversal and primed symmetries

"spin reversal" = time-reversal or anti-identity: 1′

To describe magnetic point symmetries, we need to introduce a new operator …

1′ does not change nuclear positions and changes the sign of all magnetic moments
⇒ always present in non magnetic structures but absent in magnetically ordered ones !

N.B.: 1′ does not change neither the direction of a polar vector (i.e., an electrical dipole)

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

1′

→ changes the sense of the current and thus flips the magnetic moment

→ Θ = {1,1′} time reversal group
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Magnetic point groups: Spin reversal and primed symmetries

We can define new symmetry operations =

combination of a crystallographic point group sym. with 1′ = "primed" symmetry

When a magnetic ordering occurs: 
some point symmetries may be lost and become primed

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝑚′ (primed mirror)𝑚 (mirror)
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→ subgroup of the direct product of 𝐺 with Θ = {1,1′}

𝑀  𝐺 Θ

31

Magnetic point groups: Classification

𝐺: crystallographic point group

𝑀: magnetic point group

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

3 types of magnetic point groups:

2/ 32 gray groups: 𝑀 = 𝐺 ∪ 𝐺1' (paramagnetic groups)

3/ 58 black-white groups: 𝑀 = 𝐻 ∪ 𝐺 − H 1′

with 𝐻: subgroup of index 2 of 𝐺 (halving group)

and 𝐺 − 𝐻: the remaining operators, i.e. those not in 𝐻

⇒ 122 magnetic point groups

1/ 32 colorless groups: 𝑀 = 𝐺 (Fedorov groups)

N.B.: Colorless groups are also called monochrome groups
Analogy spin-reversal / color change
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Magnetic point groups: Classification

3

3

6 cubic black-white groups

5

13

23 hexagonal/trigonal
black-white groups

5

TOTAL = 58 black-white groups

Maximal subgroups and minimal supergroups of point groups

5

13

26 tetragonal/orthorhombic
black-white groups

8

3 monoclinic/triclinic black-white groups

Taken from: International Tables for Crystallography, volume A, p. 796

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic point groups: Classification

Example: black-white magnetic point groups derived from 𝟒/𝒎

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝐺 = 4/𝑚 has 3 subgroups of index 2:
𝐻1 = 4 = {1, 4𝑧

+, 2𝑧, 4𝑧
−}

𝐻2 =  4 = {1, 4𝑧
+, 2𝑧, 4𝑧

−}

𝐻3 = 2/𝑚 = {1, 2𝑧, 1,𝑚𝑧}

𝑀1 = 𝐻1 + 𝐺 − 𝐻1 1′ = 1, 4𝑧
+, 2𝑧 , 4𝑧

−, 1′, 4𝑧
+′,𝑚𝑧′, 4𝑧

−′ = 4/𝑚′

𝑀3 = 𝐻2 + 𝐺 − 𝐻2 1′ = 1, 4𝑧
+′, 2𝑧 , 4𝑧

−′, 1, 4𝑧
+′,𝑚𝑧 , 4𝑧

−′ = 4′/𝑚

𝑀2 = 𝐻2 + 𝐺 − 𝐻2 1′ = 1, 4𝑧
+′
, 2𝑧 , 4𝑧

−′, 1′, 4𝑧
+, 𝑚𝑧′, 4𝑧

− = 4′/𝑚′

colorless group

⇒ There are 4 possible magnetic groups:

black-white
groups

𝑀0 = 𝐺 = 4/𝑚 = 1, 4𝑧
+, 2𝑧 , 4𝑧

−, 1, 4𝑧
+, 𝑚𝑧 , 4𝑧

−



GDR MEETICC
Banyuls, Feb. 2018
GDR MEETICC

Banyuls, Feb. 2018
34

Magnetic point groups: Classification

𝑀1 = 1, 4𝑧
+, 2𝑧 , 4𝑧

−, 1′, 4𝑧
+′, 𝑚𝑧′, 4𝑧

−′ = 4/𝑚′

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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If 𝑚0 ⊥ 4-axis:

𝑚0

Example: 𝑀1 = 4/𝑚′

𝑚′

4 4

𝑚′

35

Magnetic point groups: Classification

Not all of the magnetic point groups can be realized in a magnetically ordered system

→ Admissible magnetic point groups: (for a magnetic atom placed at the origin)
all the operators leave at least one spin component invariant

4:    𝑚0 → 𝑚0

𝑚′: 𝑚0 → −𝑚0

4 × 4:    𝑚0 → −𝑚0

𝑚′:  𝑚0 → 𝑚0

→ 4/𝑚′ not admissible

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

- none of the gray groups is admissible,
- many of the colorless and black-white groups are not admissible.

𝑚0If 𝑚0 ∥ 4-axis:

but 4/𝑚 is admissible if 𝑚0 ∥ 4-axis
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Magnetic point groups: Classification

The 31 admissible magnetic point groups:

Admissible magnetic point groups Admissible spin direction

1 1 any direction

2′ 2′/𝑚′ 𝑚′𝑚2′ ⊥ 2'-axis (and ⊥ 𝑚-plane for 𝑚′𝑚2′)

𝑚′ any direction within the 𝑚′-plane

𝑚 ⊥ 𝑚-plane 

𝑚′𝑚′𝑚 ⊥ 𝑚-plane 

2′2′2 ∥ 2-axis

2 2/𝑚 𝑚′𝑚′2 ∥ 2-axis

4 4 4/𝑚 42′2′ ∥ 4 or 4 -axis

4𝑚′𝑚′ 42𝑚′ 4/𝑚𝑚′𝑚′ ∥ 4 or 4 -axis

3 3 32′ 3𝑚′ 3𝑚′ ∥ 3 or 3 -axis

6 6 6/𝑚 62′2′ ∥ 6 or 6 -axis

6𝑚′𝑚′ 6𝑚′2′ 6/𝑚𝑚′𝑚′ ∥ 6 or 6 -axis

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic point groups: Prediction for macroscopic properties

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

International tables for crystallography (2006), Vol. D, Section 1.5.8.3, pp. 141-142 

Among the 31 admissible point groups (compatible with ferromagnetism), 
only 13 are also compatible with ferroelectricity

 Example 1: Ferromagnetoelectrics

(spontaneous dielectric polarization 𝑃 & magnetic polarization 𝑀)
polar vector axial vector



GDR MEETICC
Banyuls, Feb. 2018

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 38

Magnetic point groups: Prediction for macroscopic properties

 Example 2: Linear magnetoelectric effect

A magnetic field 𝐻 applied in a crystal can produce an electric polarization 𝑃: 𝑃𝑖 = 𝛼𝑖𝑗𝐻𝑗

An electric field 𝐸 applied in a crystal can produce a magnetic moment 𝑀: 𝑀𝑖 = 𝛼𝑖𝑗𝐸𝑗

→ possible in 58 magnetic point groups
→ predictions on the form of the  𝛼 tensor:

Taken from the ITC, 
Volume D, p. 138
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Magnetic point groups: Prediction for macroscopic properties

𝑃𝑛𝑚′𝑎 → 𝑚𝑚′𝑚 𝑃𝑛′𝑚′𝑎′ → 𝑚′𝑚′𝑚′

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

EuZrO3
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Magnetic Bravais lattices

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

To describe magnetic translation symmetries, we introduce a new operator …

Anti-translation  𝑡′ =  𝑡1′ (replaces the propagation vector formalism)

- Gray translation groups: not considered (incompatible with magnetic order)

→ limitation of the Shubnikov symmetry: only 𝑘 = 0, 𝑘 = 𝐻/2, or 𝑘 = 𝐻

- Black-white translation groups: contain translations and anti-translations 

𝑀𝐿 = 𝐻𝐿 ∪ 𝑇 − 𝐻𝐿 1′

with 𝐻𝐿: subgroup of index 2 of the translation group 𝑇
and 𝑇 − 𝐻𝐿: the remaining operators, i.e. those not in 𝐻𝐿

→ 22 black-white Bravais lattices

- Colorless translation groups: same as the 14 Bravais lattices (only translations)
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The 36 magnetic Bravais lattices
triclinic monoclinic

orthorhombic tetragonal

hexagonal cubic

o: translations, : anti-translations, OG(BNS)

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic Bravais lattices: OG vs BNS notations

BNS: N. V. Belov, N. N. Neronova, and T.S. Smirnova (1957)
OG: W. Opechowski and R. Guccione (1965)

BNS: 𝑋 = symbol of subgroup 𝐻𝐿 (decorated by white points only)
𝑌 = type of colored lattice (fractional anti-translation in 𝐻𝐿)

http://stokes.byu.edu/iso/magneticspacegroupshelp.php

Examples:

𝑥

𝑧

𝑦

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

1

2
 𝑎

𝐶𝑎

𝑃𝑎

1

2
 𝑎

→ same lattice symbol 𝑋 for colorless translation groups: 𝑋 = 𝑃, 𝐼, 𝐹, 𝐴, 𝐵, 𝐶, 𝑅
→ different lattice symbol 𝑋𝑌 for black-white translation groups 𝐻𝐿 ∪ 𝑇 − 𝐻𝐿 1′
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𝑥

𝑧

𝑦

http://stokes.byu.edu/iso/magneticspacegroupshelp.php

…

OG: 𝑋 = symbol of parent group 𝑇 (decorated by black and white points)
𝑌 = type of colored lattice (translations in 𝑇)

Examples:

𝑥

𝑧

𝑦

43

Magnetic Bravais lattices: OG vs BNS notations

BNS: N. V. Belov, N. N. Neronova, and T.S. Smirnova (1957)
OG: W. Opechowski and R. Guccione (1965)

→ same lattice symbol 𝑋 for colorless translation groups: 𝑋 = 𝑃, 𝐼, 𝐹, 𝐴, 𝐵, 𝐶, 𝑅
→ different lattice symbol 𝑋𝑌 for black-white translation groups 𝐻𝐿 ∪ 𝑇 − 𝐻𝐿 1′

𝑃2𝑎

2  𝑎(BNS: 𝑃𝑎) 

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

 𝑎 − 𝑏  𝑎 + 𝑏

𝑃𝐶

(BNS: 𝐶𝑎) 
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Magnetic space groups: Primed and unprimed symmetries

Atomic coordinates:  𝑟𝑗
′ = 𝑔 𝑟𝑗 = 𝛼  𝑡𝛼  𝑟𝑗 = 𝛼 𝑟𝑗 +  𝑡𝛼

Magnetic moment: 𝑚𝑗
′ = 𝑔𝑚𝑗 = det(𝛼) 𝛿 𝛼𝑚𝑗

𝑥, 𝑦, 𝑧 → 𝑥 +
1

2
, 𝑦,  𝑧 +

1

2

𝑚𝑥, 𝑚𝑦 , 𝑚𝑧 → −𝑚𝑥 , −𝑚𝑦 , 𝑚𝑧 𝑚𝑥, 𝑚𝑦 , 𝑚𝑧 → 𝑚𝑥, 𝑚𝑦 , −𝑚𝑧

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

1 0 0 1/2
0 1 0 0
0 0 − 1 1/2
0 0 0 1

𝑚𝑧
1
2 , 0,

1
2

As for magnetic point groups and translation groups, 

magnetic space group symmetries can be primed (𝑔′) or not (𝑔)

Glide plane 𝑎 ⊥  𝑐 at 𝑧 = 1/4 in 𝑃𝑛𝑚𝑎 Glide plane 𝑎′ ⊥  𝑐 at 𝑧 = 1/4 in 𝑃𝑛′𝑚𝑎′

Example:

1 0 0 1/2
0 1 0 0
0 0 − 1 1/2
0 0 0 − 1

𝑚𝑧
1
2 , 0,

1
2 ′

unprimed sym. 𝛿 = 1 spin reversal 𝛿 = −1
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Magnetic space groups: Classification

Using the same procedure as for magnetic point groups and translation groups
allows to obtain and classify the 1651 magnetic space groups = Shubnikov groups

 Daniel B. Litvin (2001) 
Pennsylvania State University, Reading, USA
Magnetic group tables electronic book

Full description of all Shubnikov groups 
(in a form similar to that of the ITC, 
volume A, for crystallographic space 
groups), using the OG notation.

http://sites.psu.edu/ecsphysicslitvin/

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic space groups: Classification

 Harold T. Stokes and Branton J. Campbell (2010)
Brigham Young University, Provo, Utah, USA
Isotropy software suite
Compiled by using the data of D. B. Litvin
(OG and BNS notations)
http://iso.byu.edu/iso/isotropy.php

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic space groups: Classification

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

 Mois I. Aroyo, J. Manuel Perez-Mato, G. de la Flor, E. S. Tasci, S. V. Gallego, …
Many tools dealing with magnetic space groups (from 2010)
http://www.cryst.ehu.es
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Magnetic space groups: Classification

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝐺: crystallographic space group, 𝐻: subgroup of index 2 of 𝐺
𝑀: magnetic space group

4 types of magnetic space groups:

 Type I: 230 colorless groups: 𝑀 = 𝐺 (Fedorov groups)

 Type II: 230 gray groups: 𝑀 = 𝐺 ∪ 𝐺1' (paramagnetic groups)

 1191 black-white groups:
𝑀 = 𝐻 ∪ 𝐺 − 𝐻 1′ (BW groups)

Type III: 
674 BW groups such that 
𝐻 is an equi-translation subgroup
(𝐻 has the same translation group 𝑇
as 𝐺:  translations only)
→ first kind, BW1

Type IV: 
517 BW groups such that
𝐻 is an equi-class subgroup 
(𝑀 has a colored lattice:
 translations and anti-translations)
→ second kind, BW2

𝑘 = 𝐻 (for centered cells) or 𝑘 =
1

2
𝐻𝑘 = 0
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Magnetic space groups: Classification

→ types I, II, and III: same notation

BNS vs OG notations for the Shubnikov groups:

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

→ type IV: different notation

𝑀 = 𝐻 ∪ 𝐺 − 𝐻 1′

with translation group 𝑇 split between 𝐻 and 𝐺 − 𝐻 ( anti-translations)
𝑀𝐿 = 𝐻𝐿 ∪ 𝑇 − 𝐻𝐿 1′

Lattice symbol: see previous part (magnetic Bravais lattices)

Symbols for the planes and axes of symmetry:

BNS notation: those belonging to subgroup 𝐻
→ always unprimed
→ can be different from those given for parent group 𝐺

OG notation: those given for parent group 𝐺
→ can be primed or unprimed
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Magnetic space groups: Example using the ITC – volume A

The magnetic space groups can be constructed 
using the International tables for Crystallography, Volume A

Colorless trivial magnetic space group:

𝐼𝑚𝑎2 = 1,𝑚𝑥 , 𝑎𝑦 , 2𝑧 𝑇

BW1 magnetic space groups: 
𝑀 = 𝐻 ∪ 𝐺 − 𝐻 1′ with all translations of 𝐺 in 𝐻

BW2 magnetic space groups 

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

For simplicity, we drop off the 
translation group 𝑇 in the following

𝐼1𝑎1 ∪ 𝐼𝑚𝑎2 − 𝐼1𝑎1 1′ = 1, 𝑎𝑦 + {𝑚𝑥 , 2𝑧}1
′ = 𝐼𝑚′𝑎2′

𝐼112 ∪ 𝐼𝑚𝑎2 − 𝐼112 1′ = 1,2𝑧 + {𝑚𝑥 , 𝑎𝑦}1
′ = 𝐼𝑚′𝑎′2

𝐼𝑚11 ∪ 𝐼𝑚𝑎2 − 𝐼𝑚11 1′ = 1,𝑚𝑥 + {𝑎𝑦 , 2𝑧}1
′ = 𝐼𝑚𝑎′2′

Example: space group 𝐼𝑚𝑎2 (No. 46)
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Magnetic space groups: Example using the ITC – volume A

Example: space group 𝐼𝑚𝑎2 (No. 46) - continuation

BW2 magnetic space groups:   
𝑀 = 𝐻 ∪ 𝐺 − 𝐻 1′ with 𝐻𝐿 in 𝐻 and 𝑇 − 𝐻𝐿 in 𝐺 − 𝐻

 𝑡𝐼 = (
1

2
,
1

2
,
1

2
) becomes an anti-translation

BNS OG

𝑃𝑛𝑎21: 1, 𝑛𝑥 , 𝑎𝑦 , 21𝑧 𝐻𝐿 + 1,𝑚𝑥 , 𝑐𝑦 , 2𝑧 𝐻𝐿
′ = 𝑃𝐼𝑛𝑎21 𝐼𝑃𝑚

′𝑎2′

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝐻𝐿 = { 𝑡| 𝑡 = 𝑢  𝑎 + 𝑣𝑏 + 𝑤  𝑐; 𝑢, 𝑣, 𝑤 ∈ }

𝑇 − 𝐻𝐿 = { 𝑡| 𝑡 = 𝑢  𝑎 + 𝑣𝑏 + 𝑤  𝑐 +  𝑡𝐼; 𝑢, 𝑣, 𝑤 ∈ }=𝐻′𝐿

𝑃𝑛𝑐2: 1, 𝑛𝑥 , 𝑐𝑦 , 2𝑧 𝐻𝐿 + 1,𝑚𝑥 , 𝑎𝑦 , 21𝑧 𝐻𝐿
′ = 𝑃𝐼𝑛𝑎21 𝐼𝑃𝑚

′𝑎2′

𝑃𝑚𝑎2: 1,𝑚𝑥 , 𝑎𝑦 , 2𝑧 𝐻𝐿 + 1, 𝑛𝑥 , 𝑐𝑦 , 21𝑧 𝐻𝐿
′ = 𝑃𝐼𝑛𝑎21 𝐼𝑃𝑚

′𝑎2′

𝑃𝑚𝑐21: 1,𝑚𝑥 , 𝑐𝑦 , 21𝑧 𝐻𝐿 + 1, 𝑛𝑥 , 𝑎𝑦 , 2𝑧 𝐻𝐿
′ = 𝑃𝐼𝑛𝑎21 𝐼𝑃𝑚

′𝑎2′
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Magnetic space groups: Example using the ITC – volume A

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Magnetic space groups: Application to LaMnO3

Above 𝑇𝑁: magnetic space group = 𝑃𝑛𝑚𝑎1′ (gray group)

Below 𝑇𝑁: 𝑘 = (0,0,0) ⇒ possible maximal subgroups (index 2)?

⇒ possible space groups: those containing 1 and not 1′

neutron diffraction experiment

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝑃𝑛𝑚𝑎′ 𝑃𝑛𝑚′𝑎 𝑃𝑛𝑚′𝑎′ 𝑃𝑛′𝑚′𝑎 𝑃𝑛′𝑚′𝑎′ 𝑃𝑛′𝑚𝑎′ 𝑃𝑛𝑚𝑎 𝑃𝑛′𝑚𝑎

Mn:
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Magnetic space groups: Application to LaMnO3

Parts of pages 1 and 2 (/2) of 𝑃𝑛′𝑚𝑎 Shubnikov group, D. B. Litvin

𝑚 cannot be on a Wyckoff position whose symmetry is  1′ !!!
( 1′ is not an admissible magnetic point group)

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Magnetic 
components
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Magnetic space groups: Application to LaMnO3

𝑷𝒏′𝒎𝒂′ Shubnikov group

+𝑚𝑧

−𝑚𝑧

Black: unprimed sym. op.
Red: primed sym. op.

 𝑎

𝑏
 𝑐

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝑃𝑛′𝑚𝑎′

= {1,21𝑦 , 1,𝑚𝑦}

∪ 21𝑥, 𝑛𝑥, 21𝑧, 𝑎𝑧 1′

page 1/2 of 𝑃𝑛′𝑚𝑎′
D. B. Litvin
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Magnetic space groups: Application to LaMnO3

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

page 2/2 of 𝑃𝑛′𝑚𝑎′
D. B. Litvin

Mn
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Magnetic space groups: Application to LaMnO3

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

page 2/2 of 𝑃𝑛′𝑚𝑎′
D. B. Litvin

Mn

Admissible magnetic point groups Admissible spin direction

1 1 any direction

2′ 2′/𝑚′ 𝑚′𝑚2′ ⊥ 2'-axis (and ⊥ 𝑚-plane for 𝑚′𝑚2′)

𝑚′ any direction within the 𝑚′-plane

𝑚 ⊥ 𝑚-plane 

The symmetry of this Wyckoff position imposes 𝑚 ∥ 𝑏
(𝑚 must be ⊥ to the mirror plane)
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Magnetic space groups: Application to LaMnO3
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0    0    0      1

0    0    0     -1
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Magnetic space groups: Application to LaMnO3
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LaMnO3:
Mn located at (0,0,0), i.e. on  1
Macroscopic measurements → AF with 𝑚 ∥  𝑎-axis

 𝑎

𝑏

 𝑐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

 𝑎

 𝑐

𝑏

origin shift by (1/2, 0, 0) in this Fig.
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Magnetic space groups: Application to LaMnO3

.mcif file for LaMnO3

𝛿 = ±1 whether the sym. op. is unprimed or primed

𝑚𝑥 = 3.87 3 𝜇𝐵/Mn3+, 𝑚𝑦 = 0,𝑚𝑧 = 0

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Visualization of *.mcif files

• FpStudio (FullProf Suite) – J. Rodriguez-Carvajal and L. Chapon

• Bilbao Crystallographic Server

http://webbdcrista1.ehu.es/magndata/mvisualize.php

• Vesta

61Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

http://webbdcrista1.ehu.es/magndata/mvisualize.php
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Magnetic domains

Symmetry of the ordered magnetic state lower than that of the paramagnetic state

𝐺0: paramagnetic Shubnikov group of order 𝑛0
𝐺: ordered Shubnikov group of order 𝑛  ⇒

𝑛0

𝑛
magnetic domains

There exist 4 types of magnetic domains:

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

𝑘

Orientation domains: 𝑠-domains

𝑘
𝑘

𝑘

Configuration domains: 𝑘-domains

𝑘

Chiral domains (if  1 is lost)

 𝑎

𝑘

Time-reversed domains: 180° domains

 𝑐
𝑏



GDR MEETICC
Banyuls, Feb. 2018
GDR MEETICC

Banyuls, Feb. 2018
63

Group representation theory

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

How to find the possible magnetic structures using group theory?

Group representation theory (= representation analysis) developped by E. F. Bertaut

 Determine experimentally the propagation vector 𝑘

 Select in the crystallographic space group 𝐺 the sym. op. 𝑔 that leave 𝑘 invariant

→ Little group 𝐺𝑘 (subgroup of 𝐺) = {𝑔 ∈ 𝐺|𝛼𝑘 = 𝑘 + 𝐻} with 𝑔 = {𝛼| 𝑡𝛼}

 Write the magnetic representation Γ = set of 3𝑛 × 3𝑛 matrices for all sym. op. of 𝐺𝑘

describing how each magnetic component is transformed
𝑛 equivalent magnetic atoms, 3 magnetic components 𝑢, 𝑣, 𝑤 for each atom
𝑑 such matrices with 𝑑 the order of 𝐺𝑘

 Reduce Γ into Irreducible representations (Ireps) Γ𝜈
(i.e., block diagonalize the matrices as much as possible): Γ = 𝑎1Γ1  𝑎2Γ2  …

 For each IRep Γ𝜈 appearing in the decomposition of Γ, find its basis vectors 𝜓𝜈
1, 𝜓𝜈

2, …

 Landau theory (for 2nd order transition): The magnetic structure that establishes at
the phase transition corresponds to an IRep that persists while all other IReps cancel  
⇒ the magnetic structure is described by the basis vectors of the IRep that

persists, while the basis vectors associated to all the other IReps cancel.
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Group representation theory

Most frequently used softwares to determine the IReps and thus the possible 
magnetic orderings:

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Basireps (from the Fullprof suite) – Juan Rodriguez-Carvajal

Sarah – Andrew Wills

MODY – W. Sikora, F. Białas, L. Pytlik

ISOTROPY - Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell

Input file: crystallographic space group

propagation vector

atomic coordinates of the magnetic atom(s)



GDR MEETICC
Banyuls, Feb. 2018
GDR MEETICC

Banyuls, Feb. 2018
65

Group representation theory: Application to LaMnO3

Input: crystallographic space group 𝑃𝑛𝑚𝑎

propagation vector 𝑘 = (0,0,0)

atomic coordinates of the magnetic atom 𝑥 = 0, 𝑦 = 0, 𝑧 = 0

Output: 4 irreducible representations of dimension 1, each contained 3 times in Γ
Γ = 3Γ1  3Γ2  3Γ3  3Γ4

Γ1 Γ2 Γ3 Γ4
Mn (0, 0, 0) 𝑢, 𝑣,    𝑤 𝑢, 𝑣,    𝑤 𝑢, 𝑣,    𝑤 𝑢, 𝑣,    𝑤

Mn
1

2
, 0,

1

2
−𝑢, −𝑣,    𝑤 −𝑢, −𝑣,    𝑤 𝑢, 𝑣, −𝑤 𝑢, 𝑣, −𝑤

Mn 0,
1

2
, 0 −𝑢,    𝑣, −𝑤 𝑢, −𝑣, 𝑤 −𝑢, 𝑣, −𝑤 𝑢, −𝑣,    𝑤

Mn
1

2
,
1

2
,
1

2
𝑢, −𝑣, −𝑤 −𝑢, 𝑣,    𝑤 −𝑢, 𝑣,    𝑤 𝑢, −𝑣, −𝑤

𝑃𝑛𝑚𝑎 𝑃𝑛′𝑚′𝑎 𝑃𝑛′𝑚𝑎′ 𝑃𝑛𝑚′𝑎′

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE
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Summary

Magnetic point groups:

As for crystallographic point groups, magnetic point groups are very important 
to make predictions on macroscopic magnetic properties

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE

Both descriptions can be used for softwares refining a magnetic structure 

N.B.: 1st approach: more general
propagation vector: very useful for diffraction  see lecture III

Nevertheless, the 2nd approach can be generalized to 
incommensurate structures → superspace groups

Magnetic space groups vs Propagation vectors & IReps:

A magnetic structure can be described in two ways:

1/ Propagation vector and irreducible representations (IReps)
or

2/ Magnetic space group (like crystallographic space groups with an 
additional symmetry operator: 1′ = spin reversal)


