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Introduction 

Magnetic materials all around us : the earth, cars, audio, video, telecommunication, electric 
motors, medical imaging, computer technology… 

Hard Disk Drive 
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Introduction 

Large variety of behaviors: dia/para/ferro/antiferro/ferrimagnetism, phase transitions, spin 
liquid, spin glass, spin ice, skyrmions, magnetostriction, magnetoresistivity, magnetocaloric, 
magnetoelectric effects, multiferroism, exchange bias…  
in different materials: metals, insulators, semi-conductors, oxides, molecular magnets,.., films, 
nanoparticles, bulk... 
 
Inspiring or verifying lots of model systems (ex. Ising model) 
 
Magnetism is a quantum phenomenon but phenomenological models are commonly used to 
treat classically matter as a continuum 
 

Magnetism: 
 

science of cooperative effects of orbital and spin moments in matter 
 

èWide subject expanding over physics, chemistry, geophysics, life science. 
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Atomic magnetic moment 

✔ An electric current is the source of a magnetic field B 

✔ A magnetic moment is equivalent to a current loop 
  

 
 
 
   creating a dipolar magnetic field 

⇥µ` = ⇥I.⇥S =
�ev

2�r
�r2⇥n =

�evr

2
⇥n

Magnetic moment

An electrical current, I, is the source of a magnetic field B

!"!!!!

!"##$%& '

Magnetic field generated by a single-turn coil

#$%&

m = coil magnetic moment

e- orbiting  
around the nucleus 

nucleus 
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✔  The magnetic moment is related to the angular momentum 

Atomic magnetic moment 

Orbital magnetic moment 

Gyromagnetic ratio 

✔A magnetic moment is equivalent to a current loop 
  
⇥µ` = ⇥I.⇥S =

�ev

2�r
�r2⇥n =

�evr

2
⇥n

�L = �r ⇥ �p = �r ⇥m�v

⇥µ` =
�e

2m
⇥L = �⇥L

gyroscope 

e- orbiting  
around the nucleus 

nucleus 
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Atomic magnetic moment 

Consequences:  
 
✔ Magnetic moment and angular momentum are antiparallel  
 
✔ Calculations with magnetic moment using formalism of angular momentum 
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  : electronic shell 
  : orbital angular momentum quantum number 
   
 
 
 
     : magnetic quantum number 

Magnetism in quantum mechanics: 
    

Atomic magnetic moment 

Distribution of electrons on atomic orbitals, which minimizes the energy:  
Building of atomic magnetic moments 

The electronic wavefunction                   is characterized by 3 quantum numbers 
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Magnetism in quantum mechanics: quantized orbital angular momentum 
 
    

Atomic magnetic moment 

The magnitude of the orbital momentum is 

The component of the orbital angular momentum along the z axis is 

     is the angular momentum operator 
 

Electronic orbitals are eigenstates of        and   

ˆ̀
Z n`m` = ~m` n`m`
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Magnetism in quantum mechanics: spin angular momentum  
        of pure quantum origin 

 
    

Atomic magnetic moment 

The magnitude of the spin angular momentum is 

The component of the spin angular momentum along the z axis is 

With the quantum numbers :  

ŝZ s = ~ms s
nucleus 
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Atomic magnetic moment 

Magnetic moments 

With                 and 
 
and the Bohr magneton 

Magnetism in quantum mechanics:  
 

Magnetic moment associated to 1 electron in the atom 
Two contributions: spin and orbit 
 
    

nucleus 
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Magnetism in quantum mechanics: several e- in an atom  
 
    

Atomic magnetic moment 

 
 
 
Combination of the orbital and spin angular momenta of the different electrons: 
related to the filling of the electronic shells in order to minimize  
the electrostatic energy and fulfill the Pauli exclusion principle 

Spin-orbit coupling:  
 
 

   Total angular momentum 
 

  A given atomic shell (multiplet) is defined by 4 quantum numbers :  
L, S, J, MJ with –J < MJ < J 
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Magnetism in quantum mechanics: several e- in an atom  

    

Atomic magnetic moment 

Hund’s rules for the ground state 
 
 

1st rule                                         maximum 
 
 
2nd rule                                           maximum in agreement with the 1st rule 

 
3rd rule from spin-orbit coupling 
 
 
  

     for less than ½ filled shell      for more than ½ filled shell 
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Atomic magnetic moment 

Application of Hund’s rule : L and S are zero for filled shells 
 
Example of unfilled shell 
Tb3+ is 4f8, 8 electrons to put in 14 boxes (   = 3) 

so L=3 and S=3 
 

The spin-orbit coupling applies for more than ½ filled shell 
so J=6 and -6 < MJ < 6 
 

The ground state is 13-fold degenerate 
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Atomic magnetic moment 

With the Landé gJ-factor 

Total magnetic moment of the unfilled shell 

µ = gJµB

p
J(J + 1)

µJ = �gJµBJ

gJ = 1 +
J(J + 1) + S(S + 1)� L(L+ 1)

2J(J + 1)



Simonet, Meeticc 2018, Banyuls sur mer 

Atomic magnetic moment 

Magnetism is a property of unfilled electronic shells: 
Most atoms (bold) are concerned but 22 are magnetic in condensed matter 

Magnetic Periodic Table 
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Atomic magnetic moment 

Atom in matter: 
 

✔ Chemical bonding è filled e- shells : no magnetic moments 
     

Magnetic         Non Magnetic         
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Atomic magnetic moment 

4f electrons: inner shell 
3d electrons: outer shell (more delocalized) 

Atom in matter: 
 

✔ Chemical bonding è filled e- shells : no magnetic moments, except for: 
     

Rare-earth element Transition-metal element 
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Atomic magnetic moment 

Atom in matter: 
 

✔ Influence of surrounding charges è crystal field (CEF) 
     
3d electrons 
Large CEF >> spin-orbit coupling 
angular distribution of 5 orbitals 
è some favored by the CEF 
è  quenching of the orbital momentum 
spin-orbit è g anisotropy 

!"#$"%#&

Atomic magnetic moment 

Atom in matter:  
! Influence of surrounding charges -> crystal field (CEF) 

3d electrons 
Large CEF>>spin-orbit : 
angular distribution of 5 orbitals  
-> some favoured by CEF 
-> quenching of orbital momentum 
+ Spin-orbit coupling : g anisotropy 

five 3d orbitals 

x2-y2 z2-r2 

xy yz xz 

Crystal field effects (II) 

ex: new eigenstates in a cubic environment (octahedric) for 3d ions (L=2) 

d
x2!y2 dz2

dxy dxzdyz

eg 

t2g 

di L
!"
di = !i# di r

"
"#
!"
di

orbital moment of crystal field eigenstates 

lml !Yl
ml ! eiml!

Real because L  is an observable (hermitic) 

di L
!"
di = 0

"
Orbital moment is quenched if non-degenerate levels 

dxy ! i ml = 2 " ml = "2( )
dxz ! i ml =1 " ml = "1( )
dyz ! ml =1 + ml = "1

d
x2!y2

" ml = 2 + ml = !2

d
z2
" ml = 0

Build real wave-functions 

Five 3d orbitals 
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Atomic magnetic moment 

4f electrons 
spin-orbit >> CEF 
Partially filled electronic shells : non-spherical 4f charge distribution 
+ CEF è selects some orbitals (lift degeneracy) 
+ spin-orbit è anisotropy J: alignment of magnetic moments along some directions 

Atom in matter: 
 

✔ Influence of surrounding charges è crystal field (CEF) 
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Atomic magnetic moment 

 

Summary 
 
Magnetism is a quantum phenomenon 
 
Magnetic moments are associated to angular momenta 
 
Orbital magnetic moment and spin magnetic moment 
 
Localized magnetic moment in 3d and 4f atoms with different behaviors 
 
Orbital and spin moments can be coupled (spin-orbit coupling) 
 
Importance of environment, crystal field: 

 - quenching of orbital moment in 3d  
 - magnetocrystalline anisotropy in 4f atoms 
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Measurable quantities: 
 
 

Magnetization : magnetic moment per unit volume 
        derivative of the energy w. r. t. the magnetic field 

 
 
 
 
 
 

Susceptibility: derivative of magnetization w. r. t. magnetic field, 
     alternatively, ratio of the magnetization on the field in the linear regime 

Assembly of non-interacting magnetic moments 

M = �@F

@B

� = µ0
@M

@B
⇡ µ0

�M
B

�
lin
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Assembly of non-interacting magnetic moments 

One atomic moment in a magnetic field B  

Zeeman energy: coupling of total magnetic moment with the magnetic field 
  

Diamagnetic term: induced orbital moment by the external magnetic field  

position of the ith e- 

Energy: 
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N atomic moments in a magnetic field B 
Calculation of magnetization and susceptibility 
Thermal average (Boltzmann statistics) + perturbation theory 

� = kBTwith 

Assembly of non-interacting magnetic moments 
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Diamagnetic term for N atoms: 
 
 
 
 
due to the induced moment by the magnetic field 
 
è negative weak susceptibility, concerns all e- of the atom, T-independent 

perpendicular to the field 

Energy: 

Assembly of non-interacting magnetic moments 
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Paramagnetic term for N atoms: 

and the Brillouin function: 

Assembly of non-interacting magnetic moments 
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Paramagnetic term 
 
Brillouin functions for different J values,  

Limit x >> 1 i.e. H >> kBT 
 
Saturation magnetization Ms =

N

V
gJJµB

Assembly of non-interacting magnetic moments 

Mean Field Model : Brillouin Paramagnetism

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

B/T (T/K)

B
1/2

B
3/2

B
5/2

B
7/2

� =
M

H
=

C

T

� =
m

H
0

= Ng2

J

J(J + 1)
µ2

B

µ
0

3kT

Curie law, C is the Curie constant
Laurent Ranno Institut Néel CNRS-UJF Rappels sur le magnétisme Quick reminder about magnetism



Simonet, Meeticc 2018, Banyuls sur mer 

Paramagnetic term 
 
Limit x << 1 i.e. kBT>>H 
 
Curie law: 

It works well for magnetic moments without interactions and negligible CEF:  
ex. Gd3+, Fe3+, Mn2+ (L=0) 

T 

with the effective moment 

Assembly of non-interacting magnetic moments 
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Summary of magnetic field response of non-interacting atomic moments  

Assembly of non-interacting magnetic moments 

At small H/kBT: linear regime 
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Dipolar interaction: 
 
Much too weak to account for the ordering of most magnetic materials 
 
Exchange interaction: 
 
Origin: electrostatic and Pauli exclusion principle 
Many-electron wavefunctions must be antisymmetric  
through the exchange of two electrons  
 
 

  Heisenberg Hamiltonian 

Magnetic moments in interaction 

J: exchange coupling constant 
J > 0 ferromagnetic 
J < 0 antiferromagnetic 
 

!"#$%&'()*&+(,%#+*-&.
!"#$%&'( )%*'+,*'
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Exchange interaction 
 
�Direct exchange:  usually weak è overlap between magnetic orbitals 
 
�Superexchange: in insulators, indirect mediated by non-magnetic atoms 
Depends on geometry of the bonds. Most often antiferromagnetic.  
Explains the magnetism in transition metal oxides. 
 
 
 
 
 
 
•  RKKY (Ruderman-Kittel-Kasuya-Yosida) in metals 
coupling localized spins on rare-earth via itinerant electrons. 

!"#$%$&'()*+$

! "#$%&#'%() *)%+'(,,#-*.)(%+/
! 0123*+)$ %4( -*.)(%+$- #'

%,*)$+%+#)&-(%*3 #1+5($

!"#$"#%&&'()&*+,-#.(/01123#452'(6-#7(8+09&) 78(66#:/'"-#;<=><?
.0+)(/269#0)'#/,(#@,(92301#$&)'-#A)/(8632()3( 0)'#B21(C-#D(E#F&8G#;<=HI?

!"#$%&'#$%()#$*

JRKKY / cos(2kF )

r3

J

R

FM

AFM

0

!" 5d, 6s itinerant

RKKY interactions

Singularity for q = 2kF

Periodicity of the magnetic
structure
determined by kF

Magnetic moments in interaction 
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Magnetic moments in interaction 

From paramagnetic state at high temperature to ordered state at low temperature: phase transition 

Msp(T) 

T 
Tc 

M 

Mr 

T<<Tc exchange interactions dominate 

T>Tc the thermal fluctuations  
dominate over exchange interactions 
in zero field 

Fluctuating  
moment 

All magnetic  
moments // 

Paramagnetic 

Ferromagnetic 



Simonet, Meeticc 2018, Banyuls sur mer 

Several sublattices:  
≠ direction of  
magnetic moments 
è compensate 

Antiferromagnetic 

Collinear ordered states 

All magnetic  
moments // 

Ferromagnetic 

Several sublattices do not  
compensate  
èspontaneous magnetization 
Ex. ferrites, garnets… 

Ferrimagnetism  

Magnetic moments in interaction 
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Magnetic moments in interaction 

!"#$"%#&

Magnetic moments in interaction 

Treatment of interacting magnetic moments : Molecular field 

Interactions represented by a fictitious field originating from neighbouring moments  

! Ferromagnetic case :  

with  

⇥Bmf = � ⇥M With positive 

At low temperature, the moments can be aligned  
by the internal molecular field without external B 

H = gµB

�

i

�Si.( �B + �Bmf ) �Bmf = � 2
gµB

�

j

Jij
�Sj

H = �
�

ij

Jij
�Si.�Sj + gµB

�

j

�Sj . �B

� =
2zJ

ng2µ2
B

Molecular field model 
 
Calculation of magnetization and susceptibility for interacting magnetic moments 
 
The interactions are represented by a fictitious field from neighboring moments 
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Molecular field model 
 
Ferromagnetic case:  
 
Calculation of the susceptibility in the low field, high temperature limit 
 

!"#$"%#&

Magnetic moments in interaction 

Treatment of interacting magnetic moments : Molecular field 

Interactions represented by a fictitious field originating from neighbouring moments  

! Ferromagnetic case :  

with  

⇥Bmf = � ⇥M With positive 

At low temperature, the moments can be aligned  
by the internal molecular field without external B 

H = gµB

�

i

�Si.( �B + �Bmf ) �Bmf = � 2
gµB

�

j

Jij
�Sj

H = �
�

ij

Jij
�Si.�Sj + gµB

�

j

�Sj . �B

� =
2zJ

ng2µ2
B

!"#$"%#&

Magnetic moments in interaction 

Treatment of interacting magnetic moments : Molecular field 

! Ferromagnetic case :  

Magnetic susceptibility 

M =
(gJµB)2J(J + 1)

3kBT
(B + �M) =

C

T
(B + �M)

In the low field, high temperature limit 

TC=!C Curie temperature 
At Tc, becomes infinite : the system becomes spontaneously magnetized 

⇥ =
C

T � �C
=

C

T � TC

   the Curie temperature 
�At TC,     becomes infinite : the system becomes spontaneously magnetized 
�Below TC, the moments can be aligned by the internal molecular field without B 
 
  

TC = �C
�

Magnetic moments in interaction 
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Molecular field model 
 
Ferromagnetic case:  
 
Calculation of the magnetization below Tc 
 
è Solve simultaneously 2 equations for B=0 
 

No solution for T > TC 
One solution for T < TC 
Spontaneous magnetization 
2nd order phase transition at TC 

!"#"$% $%&'%()$*(% '(+'%($"%,

!
!
"#$#%

T

H

n

T
M m=

Tk

Hmµ

B

00

M = gJµBJBJ(x)

x =
gJµBJ(B + �M)

kBT

x

M

MS

Magnetic moments in interaction 

T > Tc T = Tc T < Tc 
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Magnetic moments in interaction 

� =
C

T � TC

!"#$%&'%$(( )%*+,$-"#

!"#$%&'#()"*+%$,%$*$"#$- ./+&+0('#(#()1* 0($2- 3+
4)2$'12&% 0($2- 56 7+++"4

! 899:8999+;+

TT

C

C−
=χ

M

MS

Ferromagnetic paramagnetic 

magnetization susceptibility 
TC

Molecular field model 
 
Ferromagnetic case: summary  
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Magnetic moments in interaction 

!"#$"%#&

Magnetic moments in interaction 

Treatment of interacting magnetic moments : Molecular field 

Antiferromagnetism : same analysis but for each of the 2 sublattices   

Spontaneous magnetization below the Néel temperature TN on each sublattice 

TN = |�|C� =
C

T + TN
Susceptibility 

More complicated below TN :  
depend of field orientation 

Molecular field model 
 
Antiferromagnetic case: same analysis but for each of the 2 sublattices 
 
Spontaneous magnetization below the Néel temperature TN 
 
 

Susceptibility above TN : 
 
 
 
More complicated behavior below TN 
depends on the field orientation  
for a single crystal 
 
 
 

� =
C

T + TN
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Magnetic moments in interaction 

Antiferromagnets     Ferromagnets  
TN       TC 
CoO 293 K     Co 1394 K 
NiO 523 K     Ni 631 K 
MnO 116 K     Fe 1043 K 

      Gd 293 K 

Molecular field model 
 
Generalization: Curie-Weiss law 

⇥ =
C

T � �

!"#$"%#&

Magnetic moments in interaction 

Treatment of interacting magnetic moments : Molecular field 

Generalization:  

Curie-Weiss law 

1/�

!=TC !=0 

Ferromagnets 
 TC 

Fe 1043 K 
Co 1394 K 
Ni 631 K 
Gd 293 K 

Antiferromagnets 
 TN 

CoO 293 K 
NiO 523 K 
MnO 116 K 

 Shull 1951 
Neutron diffraction!

!=-TN  

T>TN 

T<TN 

⇥ =
C

T � �
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Antiferromagnets   
predicted by Louis Néel in 1936 (Nobel Prize)   
 
MnO TN=116 K      

Shull 1951 
Neutron diffraction 

Magnetic moments in interaction 

NEUTRON D I F F RACT I ON 337

pending upon the relative orientations of the atomic and
neutron magnetic moments. It is to be emphasized that
the square of D in Eq. (5) is a classical or numerical
square, in contrast to the quantum mechanical square
which appeared in Eq. (3) describing paramagnetic
scattering. In oriented, magnetic lattice scattering, only
a single-spin state is existent, and, hence, the square
of the amplitude involves S rather than S(S+1).
The term q' in Eq. (5) depends upon the relative

orientation of the two unit vectors e and x, where e is
the scattering vector given by

where h and k' are the incident and scattered wave
vectors, and x is a unit vector along the direction of
alignment of the atomic magnetic moments. H-J show
that

so that
q= eX (eXx),

q'=1—(e x)'.
It is seen that q' can attain values between 0 and 1 and,
for the particular case where x is randomly directed,

q' (random) =-', .
This dependence of q' upon the relative directions of
scattering and magnetization has been given a direct
experimental test in the scattering from magnetized,
ferromagnetic substances, " and these data show the
correctness of the above formulation.
The differential scattering cross section F' determines

what is available for coherent neutron scattering but
tells nothing about the angular distribution of scattered
intensity from a magnetic lattice. Details of the scat-
tered intensity in the diGraction pattern will be deter-
mined (as in x-ray or electron diffraction) by the crystal
structure factors, and from the experimental deter-
mination of these factors, one can hope to establish the
magnetic lattice. It is interesting to note that according
to Eq. (5) there is no coherent interference between the
magnetic and nuclear portions of the scattering, and
that in essence the two intensities of scattering are
merely additive. This is a consequence of the treatment
for unpolarized incident neutron radiation and would
not be the situation if the neutron magnetic moments
were all aligned in the incident beam. For the latter
case, the differential scattering cross section contains
cross terms between the nuclear and magnetic ampli-
tudes in addition to the above square terms.

100
BSI) (58)

f os~8.85K

60

jK 20

IOO '

p 80.
I

60

(I00) (IIO) (III) (200)

MnO

Te ~ I 20'K
293 K

(sii)
ac*443 )L

40.

dered sample was contained in a thin walled cylindrical
capsule held within a low temperature cryostat. Both
patterns were taken of the same sample before and
after introduction of liquid nitrogen coolant. The room
temperature pattern shows both magnetic diffuse scat-
tering and the Debye-Scherrer diffraction peaks at
positions indicated for nuclear scattering. There should
be coherent nuclear scattering at both all-odd and
all-even reQection positions from this NaCl-type lattice,
and since the signs of the nuclear scattering amplitudes
are opposite for Mn and for 0, the odd reflections, (111)
and (311),are strong whereas the even reflections, (200)
and (220), are very weak. When the material is cooled
to a low temperature, there is no change in the nuclear
scattering pattern, '" but the magnetic scattering has
now become concentrated in Debye-Scherrer peaks at
new positions. As can be seen from the 6gure, these
extra magnetic reQections cannot be indexed on the
basis of the conventional chemical unit cell of edge
length 4.426A. The innermost reQection for this cell is
the (100), falling at about 132"in angle, and there exists
a strong magnetic reQection inside of this angle at about
11~". It is possible to index the magnetic reQections,
however, on the basis of a cubic unit cell whose axial
length is just twice the above, or 8.85A. For this cell
the magnetic reQections are all-odd, intensity being
observed at the (111),(311), (331), and (511)positions.
The (311) ~ is on the shoulder of the (111)„,~, as can
be seen from the asymmetry of this reQection.
This twice-enlarged magnetic unit cell indicates that

successive manganese ions along the cube axis directions
are oriented differently, so that the repetition distance
(for identical scattering power) along the axis is 8.85A

MaO

As already mentioned, MnO is thought to be anti-
ferromagnetic below its Curie temperature of j.20'K;
and Fig. 4 shows neutron powder diffraction patterns
taken for this material at 300'K and at 80'K. The pow-
"Shull, %'ollan, and Strauser, Phys. Rev. 81, 483 (1951}.See

also discussion by D. J. Hughes and M. T. Surgy, Phys. Rev. 81,
498 (1951}.

10 20' Rl'
SCATTERING ANGLE

50'

Fzo. 4. Neutron diGraction patterns for MnO taken at liquid
nitrogen and room temperatures. The patterns have been cor-
rected for the various forms of extraneous, di6'use scattering
mentioned in the text. Four extra antiferromagnetic rejections
are to be noticed in the low temperature pattern.

" The nuclear intensities will increase by a few percent due
to a slight increase in the Debye-%aller temperature factor.

T<TN 

T>TN 

Scattering angle 

N
eu

tro
n 

co
un

ts
 

MnO 



Simonet, Meeticc 2018, Banyuls sur mer 

Complex magnetic structures or disordered ground states due to magnetic frustration  
 
� Lattice geometry: ex. triangle of magnetic moments antiferromagnetically interacting   

 Ising moments       Heisenberg moments 
                   

?

Magnetic moments in interaction 

Other types of magnetic states (non collinear, disordered)   

ex. Spin ice in a pyrochlore lattice 
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Magnetic structures of rare-earth metals

Diversity of structures
Characteristic of RKKY interactions

Ex. Rare earth metals 

~D.~S1 ⇥ ~S2

Magnetic moments in interaction 

Other types of magnetic states (non collinear, disordered)   

� Competition of interactions:  
Several exchange interactions,  
Dzyaloshinsky-Moriya interaction  
 
è ex. spin density wave, helix,  

 conical order, cycloids,  
 spin textures like skyrmions 
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commentary

on the controlled motion of these particle-
like magnetic nanostructures.

Today’s hard-disk drives achieve very 
high densities of information storage, 
but the complexity and fragility of their 
mechanical parts motivate the need for 
solid-state devices with comparable or 
higher bit densities. The archetype of such 
devices is the so-called racetrack memory5 
in which the information is coded in a 
magnetic nanoribbon by a train of up or 
down magnetic domains separated by 
domain walls (DWs). The train of DWs can 
be moved electrically by spin torque to read 
or write the magnetic information. However, 
challenges such as reducing the critical 
currents for DW motion while keeping 
high velocities and avoiding the detrimental 
effects of defects must be addressed before 
this approach can be translated into a 
competitive technology. The intrinsic 
properties of magnetic skyrmions might 
help tackle most of these issues. 

The origin of skyrmions
The spin texture of a magnetic skyrmion6 

is a stable configuration (or metastable 
in some cases) that, in most systems 
investigated up to now, originates 
from chiral interactions, known as 
Dzyaloshinskii–Moriya interactions 
(DMIs)7–9. Such interactions are induced 
because of the lack or breaking of inversion 
symmetry in lattices or at the interface 
of magnetic films, respectively. The DMI 
between two atomic spins S1 and S2 can be 
expressed as: HDM = −D12 · (S1 × S2).

For ultrathin magnetic films, which 
are the main focus here, interfacial DMIs 
have been predicted10 from a 3-site indirect 
exchange mechanism11 between two atomic 
spins S1 and S2 with a neighbouring atom 
having a large SOC. The resulting DMI 
vector is perpendicular to the plane of the 
triangle (Fig. 1e). At the interface between 
a ferromagnetic thin layer and a metallic 
layer with a large SOC, this mechanism 
generates a DMI for the interface spins S1 
and S2 with the DMI vector D12 shown in 
Fig. 1f (ref. 10). The existence of such an 
interfacial DMI has also been derived from 
ab initio calculations for the Ir(111)/Fe 

interface12. The magnitude of the interfacial 
DMI can be very large, ~10–20% of 
the exchange interaction in analytical 
calculations10,11 and up to 30% in ab initio 
calculations12.

Starting from a ferromagnetic state 
with S1 parallel to S2, the DMI tilts S1 with 
respect to S2 by a rotation around D12. In 
a two-dimensional (2D) ferromagnet with 
uniaxial anisotropy and a non-negligible 
DMI compared with the exchange 
interaction, the energy is minimized by the 
skyrmion structure in Fig. 1a for D12 � R12 
and Fig. 1b for D12 || R12, where  R12 is the 
vector joining the site of S1 to the site of 
S2. The extension of this principle to a 3D 
lattice is straightforward, the skyrmion 
structure is obtained by a translation 
along the anisotropy axis and is made of 
skyrmion tubes.

A large value of the ratio between 
D = |D12| and the exchange coupling J 
favours a faster rotation of the spin, reducing 
the skyrmion size (at least in the absence 
of other interactions like edge effects). The 
smaller skyrmion size in skyrmion lattices 

HDM = −D12 (S1 × S2)

Large SOC

D12

S2

S1

Large SOC

D12

S2

S1

a

b

dc

90 nm

e f

Figure 1 | Spins in a skyrmion. a,b, Skyrmions in a 2D ferromagnet with uniaxial magnetic anisotropy along the vertical axis. The magnetization is pointing up on 
the edges and pointing down in the centre. Moving along a diameter, the magnetization rotates by 2π around an axis perpendicular to the diameter (a) and by 
2π around the diameter (b), which corresponds to different orientations of the Dzyaloshinskii–Moriya vector. c, Lorentz microscopy image13 of a skyrmion lattice 
(of the type shown in  Fig. 1b) in Fe1−xCoxSi. d, Sketch of a nano-skyrmion structure observed in Fe monolayers on Ir(111) (ref. 12). e, Schematic of a DMI generated 
by indirect exchange for the triangle composed of two atomic spins and an atom with a strong SOC11. f, Sketch of a DMI at the interface between a ferromagnetic 
metal (grey) and a metal with a strong SOC (blue). The DMI vector D12 related to the triangle composed of two magnetic sites and an atom with a large SOC 
is perpendicular to the plane of the triangle. Because a large SOC exists only in the bottom metal layer, this DMI is not compensated by a DMI coming from a 
symmetric triange10. Figure reproduced with permission from: a,b, ref. 24, © K. Everschor, Univ. of Köln; c, ref. 13, © 2010 NPG; d, ref. 12, © 2011 NPG.

© 2013 Macmillan Publishers Limited. All rights reserved
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� Example of Ba3NbFe3Si2O14 insulator, helix + 120° arrangement, chiral compound 
 
 

WILL BE SET BY THE PUBLISHER Pr1-25

a 120� arrangement of the magnetic moments in the (a, b) plane inside a trimer unit. This
120� arrangement is helically modulated in the perpendicular direction (along c). This magne-
tic structure is thus characterized by two kinds of magnetic chiralities, related to the sense of
rotation of the spins inside the trimers (triangular chirality) on the one hand, and to the sense
of rotation of the spins along the helix axis (helical chirality), in addition to the structural
chirality. The combination of the two magnetic chiralities gives four possibilities.

24 Will be inserted by the editor
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Fig. 6. Top : Magnetic structure of Ba3NbFe3Si2O14 with di�erent colors for the three
Bravais lattices. Below : Representation of the magnetic structures associated with the 4
possible chiral ground states (±1,±1). The light colored moments lie in one layer and the
darker colored ones in the next layer along the c axis, a black curved arrow defines the
helicity. The red arrowed circle materializes the triangular chirality. The structural chirality
is represented by the strongest diagonal exchange between the two layers (dashed arrow
path).

these 3 interactions are not equal (di�erent geometry of the exchange paths) with, in
particular, one diagonal interaction (either J3 or J5) being expected to be stronger
than the other two. This leads to a twisted magnetic exchange around the superposed
trimers. The sense of the torsion of these exchange paths is opposite in the two enan-
tiomers since J3 is changed to J5 and vice versa. We will in the following arbitrarily
call the structural chirality positive (negative) for a strong J3 (J5).

Given the structural chirality, neutron di�raction on a single crystal shows that
the ground state is compatible with two magnetic chiralities out of four possibilities.
These are given by the couple (helical chirality=±1, triangular chirality=±1) combin-
ing the two states (±1 for positive/negative chirality) of the two magnetic chiralities.
The integrated intensities obtained on a crystal with a positive (resp. negative) struc-
tural chirality agree only with the (+1,+1) or (-1,-1) (resp. (+1,-1) or (-1,+1)) chiral
ground states. A simple picture, considering the 120� spin arrangement on a trimer
(J1) and the strongest out-of-plane interaction (J5 or J3) that connect it to the su-

Figure 13. Top : Magnetic structure of Ba3NbFe3Si2O14 with di�erent colors for the three Bravais

lattices of the trimer units. Below : Representation of the magnetic structures associated with the 4

possible chiral ground states (±1,±1).

The powder neutron di�raction experiment, because of the well known powder averaging,
did not allow to distinguish between the di�erent 120� magnetic arrangements and to get infor-
mation about the helical chirality. The four possible combinations explain as well the spectra.
Experiments on a single-crystal were necessary to achieve this. First, the structural chirality
of the single-crystal used during the neutron experiments was determined using the anomalous
x-ray di�raction. This structural chirality has important consequences on the geometry of the
magnetic exchange paths between the Fe3+ moments mediated by oxygen atoms. Given the

Magnetic moments in interaction 

Other types of magnetic states (non collinear, disordered)   

�  Definition of chirality in Magnetism  
èSense of rotation of non collinear spins  
along an orientated line 
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 Magnetic excitations 

Magnetic moments in interaction 

Wiley STM / Editor: Book Title,  
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c)
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Figure 5. Spin waves in different spin structures. Each spin undergoes precession about its 
equilibrium direction sweeping out the surface of a cone over a period 2 / (q), where (q) is 
frequency of spin wave and q is the wave vector. (a) ferromagnet, (b1) in-phase and (b2) anti-phase 
mode in two-sublattice antiferromagnet, (c) in-phase and two anti-phase (left to right) modes in 3-
sublattice antiferromagnet on triangular lattice. A half-period of spin-wave oscillation spanning 6 
spins is shown in (a) and (b1,b2), corresponding to spin wave with wave vector equal to 1/12 of 
reciprocal lattice unit in the direction of propagation. Anti-phase mode in (b2) corresponds to wave 
vector 7/12 in the extended paramagnetic Brillouin zone description.  

In an antiferromagnetic spin structure, precession of two sublattices can have the same, 

Figure 5(b1), or the opposite sense, Figure 5(b2). In the sublattice description, where 

magnetic superlattice contains two spin species, these correspond to two distinct, in-

phase and anti-phase, spin wave modes. In the extended, paramagnetic Brillouin zone 

(BZ) description, where there is only one spin wave branch for spins on a Bravais lattice, 

these two modes correspond to spin waves having different wave vectors, q and q ± Q, 

Ferromagnet 

Antiferromagnet 

Perfect order at T=0 
At T≠0, order disrupted by spin waves 
Allow entropy gain without losing too much in exchange energy 
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 Magnetic excitations 
 
 
 
 
 
 
 
 
 

Magnetic moments in interaction 

Ferromagnet J>0 Antiferromagnet J<0 

En
er

gy
 

8JS 4|J|S 

En
er

gy
 

Dispersion relation for a cubic crystal 
Probed by inelastic neutron or resonant X-ray scattering:  
information on the ground state Hamiltonian 

E(k) = 4JS(1� cos(ka)) E(k) = �4JS| sin(ka)|

reciprocal space k 
0 2π/a 

reciprocal space k 
π/a 0 
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•  Metal state due to hopping term  t (gain in kinetic energy  
from Heisenberg uncertainty principle)è measure of band width 
 

•  Coulomb energy U: cost of putting 2 e- on the same lattice site  
(Pauli exclusion principle) èmeasure of electron correlations 

 
è Half filling, 1 e- per site and U=∞: insulator 
è Half filling, U large and >> t: antiferromagnetic Mott insulator 

 Heisenberg Hamiltonian with  
èU ≈ t metal-insulator transition 
è t >> U metallic ferromagnetic 

Localized versus itinerant electrons 

Localization vs delocalization 

Tight binding model: bands (k space) 

H = !t ci
+ci+!

i,!
" +U ni

#ni
$

i
"Hubbard model with 

one orbital persite 

At half-filling: Mott insulator (real space) 

t >>U

t <<U

delocalization 

Heisenberg model of localized spins 

Away from half-filling: correlated metal  
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Magnetic band structure
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Non magnetic band structure

For a non magnetic metal
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E

E

N��(E)

Laurent Ranno Institut Néel CNRS-UJF Rappels sur le magnétisme Quick reminder about magnetism

Magnetism in metals 

Starting point: the free electron model, properties of Fermi surface, electronic band structure, 
then add correlations 

For a non-magnetic metal:  
same number of spin   and  
electrons at Fermi level 

" #
Spin-split bands  
by magnetic field 
è magnetization 

Pauli paramagnetism 
Bands split by magnetic field 
Temperature independent > 0 
Enhanced by e- correlations 

Landau diamagnetism 
Orbital response of e- gas  
to magnetic field 
Temperature independent < 0 

�L = �me

m⇤

2�P

3

�M = 2µBN(EF )�E

�P = µ0µ
2
BN(EF )

Localized versus itinerant electrons 



Simonet, Meeticc 2018, Banyuls sur mer 

Band structure : nickel

Band ferromagnetism creates a non integer magnetic moment.

N��(E)

E

E

N��(E)

F

Ni up : 5 electrons and Ni down 4.4 electrons ) 0.6µ
B

When one band is full : strong ferromagnet

Laurent Ranno Institut Néel CNRS-UJF Rappels sur le magnétisme Quick reminder about magnetism

Stoner criterion 

!!!!!!!!!"#$%&'!(')#&')$%!*$'!+&''$,-.%&#)/,!!!!!!!!!0!�!1� 23+4!!5!6!!

"

0"#""$%&'()*+",)-+*.(/""""

" "
"
"
"
"
"
"
"
"
1� 23+4"#""0+)1,-2"34"1-(-+1"(-"$5"
" """67+."(-389"7+."17,):"
"
"
"
"
"
"
0!�!1� 23+4!
!
;)/2""5+9"<,9"=3""7(11"-'+">-3)+."&.,-+.,3)?"
@'+1+"(.+",)A++A"-'+"3)/2"4+..38(*)+-1",)"
-',1".()*+"34"(-38,&")B8C+.1"D?"
"
"

Z "

07&-!8&9)%7!#9&!"#$%&'!(')#&')$%:"" @'+"7(.(8(*)+-,&"1-(-+"'(1"("8(*)+-,&"838+)-"""
7+." (-389" 43." +%(87/+" 3)+" +/+&-.3)" E,-'" 17,)"
F?" @'(-" &3..+173)A1" -3" (" '(/4G4,//+A" C()A"
1-.(AA/,)*"-'+"5+.8,"/+H+/"$5?"53.";#I"3)+"'(1"
+JB(/"(83B)-1"34" 17,)"B7"()A"A3E)"+/+&-.3)1?"
@'+"4+..38(*)+-,&"+%&'()*+"17/,--,)*"1',4-1"3)+"
C()A" A3E)" ()A" -'+" 3-'+." C()A" B7?" K//" -'+"
+/+&-.3)1" ,)" -'+"*.(2"(.+(" +)A"B7" ,)" -'+" /3E+."
C()A"E,-'"17,)"B7?"@'(-".+AB&+1"-'+,."+)+.*2"C2"
(C3B-"'(/4" -'+"+%&'()*+" 17/,--,)*?"L+"+)&3B)G
-+.+A"("1,8,/(."7(--+.)",)"&3H(/+)-"C3)A,)*9",?+?9"
(" 17/,--,)*" 34" -E3" '(/4G4,//+A" /+H+/1" ,)-3" ("
&387/+-+/2G4,//+A" /3E+." /+H+/" ()A" ()" +87-2"
B77+."/+H+/?"

                             E 
      

                      

       EF
 
 
 
  

 
 

     D�(E)                      D�(E) 

�"

�

" M

Z 

!(EF )U
2

Chapter 7

Magnetism in metals

Magnetic ordering in metals can be viewed as an instability of the Fermi liquid state. We enter
this new behavior of metals through a detailed description of the Stoner ferromagnetism. The
discussion of antiferromagnetism and spin density wave phases will be only brief here. In Stoner
ferromagnets the magnetic moment is provided by the spin of itinerant electrons. Magnetism
due to localized magnetic moments will be considered in the context of Mott insulators which
are subject of the next chapter.
Well-known examples of elemental ferromagnetic metals are iron (Fe), cobalt (Co) and nickel
(Ni) belonging to the 3d transition metals, where the 3d-orbital character is dominant for the
conduction electrons at the Fermi energy. These orbitals are rather tightly bound to the atomic
cores such that the electron mobility is reduced, enhancing the e�ect of interaction which is
essential for the formation of a magnetic state.
Other forms of magnetism, such as antiferromagnetism and the spin density wave state are found
in the 3d transition metals Cr and Mn. On the other hand, 4d and 5d transition metals within
the same columns of the periodic system are not magnetic. Their d-orbitals are more extended,
leading to a higher mobility of the electrons, such that the mutual interaction is insu⇥cient to
trigger magnetism. It is, however, possible to find ferromagnetism in ZrZn2 where zink (Zn) may
act as a spacer reducing the mobility of the 4d-electrons of zirconium (Zr). The 4d-elements
Pd and Rh and the 5d-element Pt are, however, nearly ferromagnetic. Going further in the
periodic table, the 4f -orbitals appearing in the lanthanides are nearly localized and can lead
to ferromagnetism, as illustrated by the elements going from Gd through Tm in the periodic
system.
Magnetism appears through a phase transition, meaning that the metal is non-magnetic at
temperatures above a critical temperature Tc, the Curie-temperature (cf. Table 7.1). In many
cases, magnetism appears at Tc as a continuous, second order phase transition involving the
spontaneous violation of symmetry. This transition is lacking latent heat (no discontinuity in
entropy and volume) but instead features a discontinuity in the specific heat.

element Tc (K) type element Tc (K) type
Fe 1043 ferromagnet (3d) Gd 293 ferromagnet (4f)
Co 1388 ferromagnet (3d) Dy 85 ferromagnet (4f)
Ni 627 ferromagnet (3d) Cr 312 spin density wave (3d)

ZrZn2 22 ferromagnet �-Mn 100 antiferromagnet
Pd – paramagnet Pt – paramagnet

HfZn2 – paramagnet

Table 7.1: Selection of (ferro)magnetic materials with their respective form of magnetism and
the critical temperature Tc.
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A spin-dependent electron interaction 
Spontaneously spin-split bands: Stoner criterion 

Excitation in the e- gas: 
Stoner continuum:  
e- hole excitations  from   to bands 
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Fig. 7.13 Excitations in an electron gas. (a)
The spin-split bunds are separated by A, the
exchange spotting, (b) The Fermi surfaces
for spin-up and spin-Juwn electrons, (c) A
Stoner excitation can be created if there is
a filled f state with wave vector k and an
i- empty state with wave vector k - q . The
shaded area shows the possible choices of k
for different values of q. (d) The dispersion
relation (a graph of u> against if) shows a
spin-wave branch and a continuum of Stoner
exdlalions.

and is therefore applicable to localized moment systems, but it turns out that
spin waves can also be derived for metallic systems. Second, there is also a
continuum of electron-hole excitations in which an electron transfers from a
filled state in one of the spin-split bands to an empty state in the other spin-
split band. These latter excitations are known as Stoner excitations. In a Stoner
excitation an electron with wave vector k+q and spin down is excited to a state
with wave vector k and spin up. The energy of the excitation is given by

where Ek = /"r£-/2mc and A is the exchange splitting, the energy cost to flip
a spin. These results are illustrated in Fig. 7.13.

In paramagnetic metals the two spin-split bands are not spin-split in the
absence of a magnetic field. The spin-wave excitations have a short lifetime
and thus are very heavily damped (they arc in the overdamped limit, if
considered as damped harmonic oscillators). They are known as poramognons
and, like conventional spin-wave excitations, they can be studied by inelastic
neutron scattering.

In this book we have been working with two entirely distinct pictures:
insulating materials in which the magnetism is associated with localized mo-
ments on atoms and metals in which the magnetism is associated with entirely
delocalized moments. Many real materials are somewhere in between, with
magnetism associated with spin density fluctuations intermediate between the
localized moment and band ferromagnet regimes. A local moment fluctuation
is localized in real space while a spin fluctuation in a weakly ferromagnetic
metal may be regarded as being localized in q -space.

and more: generalized susceptibility,  
spin-density wave instabilities, Kondo effect… 

Δ exchange  
splitting 

0 

~! = Ek+q � Ek +�

Spin wave 
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èband ferromagnetism  
ènon-integer magnetic moment 

Magnetism in metals 

Localized versus itinerant electrons 
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From microscopic to macroscopic 

Macroscopic behavior of magnetization, a compromise between 4 mechanisms: 
 
✔ Exchange interaction: favors uniform magnetization. Very strong but short-ranged 

✔ Dipolar interaction:  
 tends to avoid the formation of magnetic poles. Weak but long-ranged 

✔ Magnetocrystalline anisotropy:  
 orients the magnetic moments along privileged directions 

✔ Zeeman energy:  
 interaction with an external magnetic field  
 è alignment of the magnetic moments along the field 

 
for a homogeneous ferromagnetic material, minimization of the energy: 
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From microscopic to macroscopic  
Macroscopic behaviour of magnetization, a compromise between 4 interactions: 

!Exchange interaction :  
 favours uniform magnetization. Very strong but short-ranged 

!Dipolar interaction :  
 tends to avoid formation of magnetic poles. Weak but long-ranged 

!Magnetocrystalline anisotropy : 
 orients magnetic moments along privileged directions 

!Zeeman energy, interaction with an external magnetic field : 
 alignment of magnetic moments along the field 

For a homogeneous ferromagnetic material, minimization of free energy:  

FT = Fex + Fdip + Fan + FH
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From microscopic to macroscopic 

Magnetocrystalline anisotropy 
 
èMagnetic moments prefer to align along certain  
crystallographic directions (stronger for 4f than for 3d atoms) 
 
Magnetization variation against anisotropy in ferromagnets 
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From microscopic to macroscopic  
Magnetocrystalline anisotropy 

Magnetization variation against anisotropy in ferromagnets 

Uniaxial anisotropy 
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Uniaxial anisotropy 

Magnetic Atoms in a Solid

For a sphere of magnetic material (so isotropic), experimentally,
there exists : easy axes to magnetise the sample and hard axes

Laurent Ranno Institut Néel CNRS-UJF Rappels sur le magnétisme Quick reminder about magnetism
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6.7 Domains 129

Fig. 6.22 Magnetization in Fe, Co and Ni
for applied fields in different directions show-
ing anisotropy. After Honda and Kaya 1926,
Kaya 1928.

where K1 and K2 are anisotropy constants and 6 is the angle between the
magnetization and the stacking direction of the hexagonally close packed
planes. Because these constants are positive the energy is minimized when
the magnetization lies along the stacking direction. In eqn 6.38, E, K1 and K2

are energy densities (i.e. they are measured in J m- 3). The anisotropy constants
are found to be strongly temperature dependent.

Equation 6.38 is appropriate for uniaxial anisotropy, in which the energy
depends on the angle to a single axis (in Co this is the stacking axis of
the hexagonally close packed planes). In a cubic system, the appropriate
expression is

where m = (mx, my, mz) = M/|M|. In spherical coordinates this is

The anisotropy energy arises from the spin-orbit interaction and the partial
quenching of the angular momentum. Anisotropy energies are usually in the
range 102-107 Jm- 3 . This corresponds to an energy per atom in the range
10-8-10-3 eV. The anisotropy energy is larger in lattices (of magnetic ions)
of low symmetry and smaller in lattices of high symmetry. For example, cubic
Fe and Ni have K\ equal to 4.8 x 104 Jm-3 and —5.7 x 103 Jm-3 respectively,
but hexagonal Co'has K1 = 5 x 105 Jm- 3 . Low symmetry permanent magnet
materials NdaFe2B and SmCos have K\1 equal to 5 x 106 Jm-3 and 1.7 x
107 Jm-3 respectively.

An additional energy term is due to the demagnetizing energy associated
with the sample shape and is referred to as shape anisotropy. In thin films, a
shape anisotropy 1/2uoM2 cos2 & (where 9 is the angle between the film normal
and M) leads to an energetic saving for keeping the magnetization in the plane
of the film.

6.7.3 Domain wall width
In the magnetic domains of a ferromagnet the magnetization will prefer to
lie along the easy direction but between domains, in the domain wall, it will
have to rotate and a component will lie along the hard axis which will cost
energy. If we assume a simple form for the anisotropy energy density, namely
E = K sin2 & where K is an anisotropy constant, then we can easily find an
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depends on the angle to a single axis (in Co this is the stacking axis of
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with the sample shape and is referred to as shape anisotropy. In thin films, a
shape anisotropy 1/2uoM2 cos2 & (where 9 is the angle between the film normal
and M) leads to an energetic saving for keeping the magnetization in the plane
of the film.

6.7.3 Domain wall width
In the magnetic domains of a ferromagnet the magnetization will prefer to
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From microscopic to macroscopic 

Magnetocrystalline anisotropy 
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Nickel 
T=300 K 

Cubic symmetry Easy axis <100> Easy axis <111> 

Magnetic Atoms in a Solid

For a sphere of magnetic material (so isotropic), experimentally,
there exists : easy axes to magnetise the sample and hard axes

Laurent Ranno Institut Néel CNRS-UJF Rappels sur le magnétisme Quick reminder about magnetism

Magnetization variation against anisotropy in ferromagnets 
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From microscopic to macroscopic 

Dipolar energy 
 
Minimizing the demagnetizing field produced by the material 
è shape anisotropy 
è    formation of magnetic domains with magnetization // anisotropy directions 
 

èExplains zero macroscopic magnetization in ferromagnetic materials below TC 
 if they have not been submitted to a magnetic field 

!"#$"%#&

From microscopic to macroscopic  

minimising the demagnetising field produced by the material 

-> formation of magnetic domains 
 with magnetization along the directions privileged by anisotropy 

Dipolar energy E =
µ0

4�r3
[⇥µ1.⇥µ2 �

3
r2

(⇥µ1.⇥r)(⇥µ2.⇥r)]

-> shape anisotropy &

Explains zero macroscopic magnetization in  ferromagnetic materials below TC  
if they have not been submitted to a magnetic  field. 
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From microscopic to macroscopic  

minimising the demagnetising field produced by the material 

-> formation of magnetic domains 
 with magnetization along the directions privileged by anisotropy 

Dipolar energy E =
µ0

4�r3
[⇥µ1.⇥µ2 �

3
r2

(⇥µ1.⇥r)(⇥µ2.⇥r)]

-> shape anisotropy &

Explains zero macroscopic magnetization in  ferromagnetic materials below TC  
if they have not been submitted to a magnetic  field. 
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From microscopic to macroscopic 

Magnetic domains 

Cost in exchange and anisotropy energies  
at the boundaries between domains: domain walls 
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From microscopic to macroscopic  

Cost in exchange and anisotropy energies  
at the boundaries between domains: domain walls 
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From microscopic to macroscopic 
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From microscopic to macroscopic  
Width of the wall : balance between exchange and anisotropy energy 

Note : other types of domain walls in reduced dimension systems 

�EA = NK < sin2 � >� K⇥
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�Eexch = NJS2(1� cos �) ⇥ ⇥JS2�

� =
�

2⇥a

�
Eexch

K
� = ⇥

�
2
�

KEexchEnergy of the domain wall: 

!5-100 nm 

Exchange energy lost: 

Anisotropy energy lost 

Total energy minimization  

Domain wall width: 

Large (small) anisotropy è narrow (wide) domain walls 
Bloch walls 

Width of the wall: balance between exchange and anisotropy energy 

Domain wall width 

Energy of the domain wall: 

≈5-10 nm 
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From microscopic to macroscopic 
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From microscopic to macroscopic  

Coercitivity represents the magnetization ability to resist  
reversal against applied magnetic field 

Coercive field for coherent rotation : 
Stoner-Wohlfarth model 

E = K sin2 � + µ0MsH cos �

Energy minimization wrt ! :  

As long as        ,  !=0 and " are  

two minima separated by a barrier 

When 

the energy barrier flattens and the magnetization can rotate to the  !=" minimum 

uniaxial anisotropy Zeeman term 
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H = 2K/µ0Ms

H < 2K/µ0Ms

Coercitivity represents the magnetization ability to resist reversal  
against applied magnetic field  
 
Coercive field for coherent rotationè 
Stoner-Wolfarth model: 
 

E = K sin

2 ✓ + µ0MsH cos ✓

Uniaxial anisotropy Zeeman term 
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From microscopic to macroscopic  

Coercitivity represents the magnetization ability to resist  
reversal against applied magnetic field 

Coercive field for coherent rotation : 
Stoner-Wohlfarth model 

E = K sin2 � + µ0MsH cos �

Energy minimization wrt ! :  

As long as        ,  !=0 and " are  

two minima separated by a barrier 

When 

the energy barrier flattens and the magnetization can rotate to the  !=" minimum 

uniaxial anisotropy Zeeman term 

'&#& (&

H = 2K/µ0Ms

H < 2K/µ0Ms

H < 2K/µ0Ms

H = 2K/µ0Ms

✓ = 0

Coercitivity represents the magnetization ability to resist reversal  
against applied magnetic field  
 
Coercive field for coherent rotationè 
Stoner-Wolfarth model: 
 

E = K sin

2 ✓ + µ0MsH cos ✓

Uniaxial anisotropy Zeeman term 

✓ = ⇡

✓ = ⇡•  As long as                              ,              and    
     are two minima separated by an energy  barrier 
 
•  When                              , the barrier flattens  
    and the magnetization can rotate  
    to the minimum 
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From microscopic to macroscopic 
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From microscopic to macroscopic  

Stoner-Wohlfarth model works well for nanoparticles 

The coercive field  

In macroscopic materials, influence of defects 
Rotation occurs by nucleation on defects  
and propagation of domain walls 

But                       for most systems 

Hc = 2K/µ0Ms

Hc << 2K/µ0Ms

Stoner-Wohlfarth model works well for nanoparticles 

The coercive field 

Activation  
volume 

But for most systems 

In macroscopic materials, influence of defects: 
Rotation occurs by nucleation on defects  
and propagation of domain walls 
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From microscopic to macroscopic  

Hysteresis cycle of a ferromagnet 

From microscopic to macroscopic 

Hysteresis cycle of a ferromagnet 
 Spontaneous magnetization Ms 

Remanent magnetization Mr 

Coercive field Hc 

Losses 

Magnetic induction 
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Applications 

Applied research è lots of applications, concerns mostly ferromagnetic materials 
Hard magnetic materials: reasonable value of remanence, high coercitivity 
Soft magnetic materials: high remanence, low coercitivity 
Materials for electronics: operate at high frequencies 

Recording and reading 
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Applications 
Applied research -> lots of applications, concerns mostly ferromagnetic materials 
Hard magnetic materials (reasonable value of remanence, high coercitivity) 
Soft magnetic materials (high remanence, low coercitivity) 
Magnetic memory materials (high remanence, moderate coercitivity) 
Materials for electronics : operate at high frequencies 

 … 

Recording and reading 
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Applications 
Applied research -> lots of applications, concerns mostly ferromagnetic materials 
Hard magnetic materials (reasonable value of remanence, high coercitivity) 
Soft magnetic materials (high remanence, low coercitivity) 
Magnetic memory materials (high remanence, moderate coercitivity) 
Materials for electronics : operate at high frequencies 

 … 

Recording and reading 
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Research in magnetism : modern trends 

Frustration : complex magnetic orders, spin liquid, spin ices … 
Molecular magnetism : photoswitshable, molecular magnets 
From quantum to classical: mesoscopic scale 
-> Quantum computer 
Multiferroism : coexistence of two ferroic orders (magnetic, electric, elastic) 
Low dimension systems: Haldane, BEC, Luttinger liquid 
Quantum phase transitions 
Magnetism and superconductivity 
Nano materials : thin films, multilayers, nano particles 
->Spintronics 
Magnetoscience 
… 
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Research in magnetism : modern trends 

Frustration : complex magnetic orders, spin liquid, spin ices … 
Molecular magnetism : photoswitshable, molecular magnets 
From quantum to classical: mesoscopic scale 
-> Quantum computer 
Multiferroism : coexistence of two ferroic orders (magnetic, electric, elastic) 
Low dimension systems: Haldane, BEC, Luttinger liquid 
Quantum phase transitions 
Magnetism and superconductivity 
Nano materials : thin films, multilayers, nano particles 
->Spintronics 
Magnetoscience 
… 

•  Magnetic frustration: complex magnetic (dis)ordered ground states 
•  Molecular magnetism: photoswitshable, quantum tunneling 
•  Mesoscopic scale (from quantum to classical) è quantum computer 
•  Multiferroism: coexisting ferroic orders (magnetic, electric…) 
•  Quantum phase transition (at T=0) 
•  Low dimensional systems: Haldane, Bose-Einstein condensate, Luttinger liquids 
•  Iridates and topological matter 
•  Magnetism and superconductivity 
•  Nanomaterials: thin films, multilayers, nanoparticles 
•  Spintronics: use of the spin of the electrons in electronic devices 
•  Skyrmionics 
•  Magnetoscience: magnetic field effects on physics,  
    chemistry, biology … 
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FIG. 3: (Color online) Room temperature RIXS spectrum of
Sr3NiIrO6 at Q = (10 -1 7). The dashed curves show the
Pearson-VII fits of the different features.

The d-d excitations were analyzed within the ionic
model described by the Hamiltonian:

H = 10Dq(|e±g ihe±g |) +�(
2

3
|t0
2giht02g| � 1

3
|t±
2giht±2g|)

+ �L ·S (1)

where � describes the splitting of the t
2g orbitals due to

the trigonal distortion of the IrO
6

octahedron and � is
the spin-orbit coupling parameter. The |e±g i, |t0

2gi and
|t±
2gi orbital states in trigonal symmetry are defined in

the Supplemental Material [24]. Our RIXS experiment
allowed to determine that the cubic 10Dq splitting be-
tween the t

2g and the eg levels is ⇡ 4 eV. Although
10Dq is much larger than � and �, the inclusion of the
first term of Eq. 1 might be relevant in the calculation.
Indeed in the case of trigonal distortion, the t

2g orbitals
are split into a

1g and e0g orbitals (see Fig. 2). Thus,
a hybridization of the latter and the higher eg orbitals
is possible and it has been shown that this hybridiza-
tion can affect the a

1g-e0g relative order [25]. Note also
that the correlations are taken into account by applying
the Hund’s and Pauli’s rules, the five electrons filling the
lowest energy state. We can then interpret the results
either as electron being excited into higher levels or as
hole being excited into lower levels.

From the eigenvalues of H, the values of the spin-orbit
coupling parameter � and of the non-cubic crystal field
splitting � can be easily computed. These in fact de-
pend on the assignment of the excitations observed at
0.57 eVand 0.73 eVto the hole excitations of the com-
puted electron level scheme. According to the ab initio

quantum chemistry calculations described below the a
1g

singlet should lie at energy higher than the e0g doublet
in the absence of spin-orbit coupling. It follows that
� = 0.384 eV and � = �0.215 eV. The ground state
wave function (represented in Fig. 4) will be one of the
following :

8
><

>:

|0, "i = i↵|t02g,"i+i|t+2g,#i+|t�2g,#i+i�|e+g ,#i+�|e�g�,#ip
↵2

+2�2
+2

|0, #i = ↵|t02g,#i�|t+2g,"i�i|t�2g,"i+�|e+g ,"i+i�|e�g ,"ip
↵2

+2�2
+2

(2)
with ↵= 0.73 and �=0.02. The large difference between
the weight of the eg and t

2g terms implies that the eg
levels give a minor contribution.
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FIG. 4: (Color online) Amplitude of the probability of pres-
ence of the hole in the t2g levels for a perfect octahedral en-
vironment of the Ir4+ (left) and for an octahedron elongated
along the trigonal axis (right). The red/blue colors represent
the up/down orientations of the spin.

In order to interpret our experimental results and to
tackle the controversies yielded by the different previous
ab initio calculations [19–21], we have undertaken cal-
culations using a quantum chemistry inherited computa-
tional scheme similar to the methods recently described
by Hozoi and co-workers [3, 4, 6, 14], in which they have
shown that the combination of MRCI+SOC is able to
reproduce and explain well the RIXS spectra associated
to the d� d excitations in iridates. The local Ir-5d elec-
tronic structure has been investigated in the basis of mul-
ticonfigurational Complete Active Space Self-Consistent
Field (CASSCF) [26] method which is implemented in
MOLCAS 7.8 code [27] to ensure a proper description of
the multiplet physics [24]. This multielectron approach
implies working on a finite number of atoms, defining a
representative cluster (shown Fig. 1).

As expected, due to a large crystal field splitting 10Dq
of about 3.7 eV (estimated from SD-MRCI + SOC, in
good agreement with experimental estimate of 4 eV), all
5 electrons of Ir-5d are arranged in a low-spin S = 1

2

man-
ner to occupy the t

2g-like orbitals. In the spin-orbit free
framework, these three doublet states of Ir and the S = 1
states of the two Ni ions can couple to produce three sets
of one sextet, two quartet and two doublet states, lying
in energy windows of 0�33 meV and 0.24�0.26 eV. This
gives an estimate to the Ir-5t

2g splitting of 0.2� 0.24 eV

(several tens of nanometres) can be regarded as a magnetically 2D
system, in which the direction of q is confined within the plane
because the sample thickness is less than the helical wavelength;
therefore, various features should appear that are missing in bulk
samples. In the context of the skyrmion, the thin film has the advant-
age that the conical state is not stabilized when the magnetic field is
perpendicular to the plane23. Therefore, it is expected that the SkX can
be stabilized much more easily, and even at T 5 0, in a thin film of
helical magnet.

In this Letter, we report the real-space observation of the forma-
tion of the SkX in a thin film of B20-type Fe0.5Co0.5Si, the thickness of
which is less than the helical wavelength, using Lorentz TEM28 with a
high spatial resolution. The quantitative evaluation of the magnetic
components is achieved by combining the Lorentz TEM observation
with a magnetic transport-of-intensity equation (TIE) calculation
(Supplementary Information).

We first discuss the two prototypical topological spin textures
observed for the (001) thin film of Fe0.5Co0.5Si. The Monte Carlo
simulation (Supplementary Information) for the discretized version
of the Hamiltonian in equation (1) predicts that the proper screw
(Fig. 1a) changes to the 2D skyrmion lattice (Fig. 1b) when a perpen-
dicular external magnetic field is applied at low temperature and when
the thickness of the thin film is reduced to close to or less than the
helical wavelength. The Lorentz TEM observation of the zero-field
state below the magnetic transition temperature (,40 K) clearly
reveals the stripy pattern (Fig. 1d) of the lateral component of the
magnetization, with a period of 90 nm, as previously reported18; this
indicates the proper-screw spin propagating in the [100] or [010]
direction. When a magnetic field (50 mT) was applied normal to the
plate, a 2D skyrmion lattice like that predicted by the simulation
(Fig. 1b) was observed as a real-space image (Fig. 1e) by means of
Lorentz TEM. The hexagonal lattice is a periodic array of swirling spin
textures (a magnified view is shown in Fig. 1f) and the lattice spacing is
of the same order as the stripe period, ,90 nm. Each skyrmion has the
Dzyaloshinskii–Moriya interaction energy gain, and the regions
between them have the magnetic field energy gain. Therefore, the
closest-packed hexagonal lattice of the skyrmion has both energy
gains, and forms at a magnetic field strength intermediate between
two critical values, each of which is of order a2/J in units of energy. We

note that the anticlockwise rotating spins in each spin structure reflect
the sign of the Dzyaloshinskii–Moriya interaction of this helical mag-
net. Although Lorentz TEM cannot specify the direction of the mag-
netization normal to the plate, the spins in the background (where the
black colouring indicates zero lateral component) should point
upwards and the spins in the black cores of the ‘particles’ should point
downwards; this is inferred from comparison with the simulation of
the skyrmion and is also in accord with there being a larger upward
component along the direction of the magnetic field. The situation is
similar to the magnetic flux in a superconductor29, in which the spins
are parallel to the magnetic field in the core of each vortex.

Keeping this transformation between the two distinct spin textures
(helical and skyrmion) in mind, let us go into detail about their field
and temperature dependences. First, we consider the isothermal vari-
ation of the spin texture as the magnetic field applied normal to the
(001) film is increased in intensity. The magnetic domain configura-
tion at zero field is shown in Fig. 2a. In analogy to Bragg reflections
observed in neutron scattering22, two peaks were found in the cor-
responding fast Fourier transform (FFT) pattern (Fig. 2e), confirm-
ing that the helical axis is along the [100] direction. In the real-space
image, however, knife-edge dislocations (such as that marked by an
arrowhead in Fig. 2a) are often seen in the helical spin state, as
pointed out in ref. 18. When a weak external magnetic field, of
20 mT, was applied normal to the thin film, the hexagonally arranged
skyrmions (marked by a hexagon in Fig. 2b) started to appear as the
spin stripes began to fragment. The coexistence of the stripe domain
and skyrmions is also seen in the corresponding FFT pattern (Fig. 2f);
the two main peaks rotate slightly away from the [100] axis, and two
other broad peaks and a weak halo appear. With further increase of
the magnetic field to 50 mT (Fig. 2c), stripe domains were completely
replaced by hexagonally ordered skyrmions. Such a 2D skyrmion
lattice structure develops over the whole region of the (001) sample,
except for the areas containing magnetic defects (Supplementary
Information). A lattice dislocation was also observed in the SkX, as
indicated by a white arrowhead in Fig. 2c. The corresponding FFT
(Fig. 2g) shows the six peaks associated with the hexagonal SkX
structure. The SkX structure changes to a ferromagnetic structure
at a higher magnetic field, for example 80 mT (Fig. 2d, h), rendering
no magnetic contrast in the lateral component.

d e f

90 nm 90 nm 30 nm

[010] [100]

a b c

Figure 1 | Topological spin textures in the helical magnet Fe0.5Co0.5Si.
a, b, Helical (a) and skyrmion (b) structures predicted by Monte Carlo
simulation. c, Schematic of the spin configuration in a skyrmion. d–f, The
experimentally observed real-space images of the spin texture, represented
by the lateral magnetization distribution as obtained by TIE analysis of the

Lorentz TEM data: helical structure at zero magnetic field (d), the skyrmion
crystal (SkX) structure for a weak magnetic field (50 mT) applied normal to
the thin plate (e) and a magnified view of e (f). The colour map and white
arrows represent the magnetization direction at each point.
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Magnetic fragmentation in spin ice
Magnetic fragmentation
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