

GDR MEETICC

Matériaux, Etats ElecTroniques, Interaction et Couplages non Conventionnels

Winter school

4 – 10 February 2018, Banyuls-sur-Mer, France

CRYSTALLOGRAPHIC and MAGNETIC STRUCTURES from NEUTRON DIFFRACTION: the POWER of SYMMETRIES (Lecture I)

&

Béatrice GRENIER

UGA & CEA, INAC/MEM/MDN

Grenoble, France

Gwenaëlle ROUSSE

UPMC & Collège de France,

Paris, France

I- Crystallographic structures

Point Group Symmetry: from the elementary point symmetries to the 32 point groups **Translation Symmetry**: lattice, motif, unit cell, directions and net planes, twins **Space group symmetry**: glide planes and screw axes, the 230 space groups, the ITC

II- Magnetic structures

Banyuls, Feb. 2018

Description in terms of propagation vector: *the various orderings, examples* **Description in terms of symmetry**:

Magnetic point groups: time reversal, the 122 magnetic point groups Magnetic lattices: translations and anti-translations, the 36 magnetic lattices Magnetic space groups = Shubnikov groups

III- Determination of nucl. and mag. structures from neutron diffraction

Nuclear and magnetic neutron diffraction: structure factors, extinction rules Examples in powder neutron diffraction

Examples in single-crystal neutron diffraction

The word crystal comes from Greek (krustallas) and means "solidified by the cold".

Crystallography = science of crystals

 \rightarrow external shape, internal structure, crystal growth, and physical properties.

<u>Objective</u>: determine the atomic positions in the unit cell. <u>Mean</u>: diffraction techniques (X-rays, neutrons, electrons)

Curie's principle : The symmetry of a cause is always preserved in its effects

M

Existence or not of some phenomena, symmetries of the possible ones

. . .

Examples: existence or not of ferroelectricity relations between the various components of the stress tensor

Crystallography: *introduction*

Crystallography \rightarrow Link between structure and physical properties

1- Translation symmetry

Periodicity of the physical properties: Solid state physics

- Phonons, magnons, ...
- Diffraction

2- Point (group) symmetry

Anisotropy of the physical properties: macroscopic physics

 \rightarrow reflects the point symmetry of crystals

- External shape of crystals (natural faces)
- Electric conductivity, optical, mechanical, magnetic, properties

To describe crystals: geometrical aspects, symmetries, atomic positions, ...

Direct space

To determine the crystal structure: diffraction Reciprocal space

1. Point group symmetry

Elementary point symmetry operations Crystallographic point groups: definition, international notation Examples of point groups The 32 crystallographic point groups and 11 Laue classes

2. Translation symmetry

Lattice and motif, Unit cell The orientation symmetries of lattices: the 6 conventional cells, 7 crystal systems and 14 Bravais lattices Lattice directions and net planes

3. Space group symmetry

Glide planes and screw axes The 230 space groups The International Tables for Crystallography

At the macroscopic & atomic (to within a translation) scales, \exists point symmetries, named **point symmetries**, that keep at least one point fixed, the origin.

GDR MFFT

Banyuls, Feb. 2018

 \rightarrow 10 elementary operations: point groups 1, 2, 3, 4, 6, $\overline{1}, \overline{2} = m, \overline{3}, \overline{4}, \overline{6}$

Cnrs

GDR MFFT

Banyuls, Feb. 2018

Proper (Det = 1) Improper (Det = -1)

1. Point Group Symmetry: *Definition of a group*

The point symmetry operations form a group

A group (G, \times) of order n is a set of distinct elements g_1, g_2, \dots, g_n equipped with an operation (group multiplication \times) that combines any two elements to form a third element and that satisfies the four axioms:

Closure: $g_i \times g_j \in G$ Identity: $\exists ! e \text{ such that } g \times e = e \times g = g \rightarrow 1 \text{ (does nothing)}$ Invertibility: each element g has a unique inverse g^{-1} such that: $g \times g^{-1} = g^{-1} \times g = e$ Associativity: $(g_i \times g_j) \times g_k = g_i \times (g_j \times g_k)$ For point symmetry operations:

 $\times \leftrightarrow$ apply successively 2 symmetry operations

GDR MFFT

Banyuls, Feb. 2018

1. Point Group Symmetry: *How to obtain and name all point groups?*

How to obtain all crystallographic point groups (= crystal classes) ?

Combine the 10 elementary symmetry operations, with the following constraints:

- all symmetry elements go through a common point,
- compatibility with the translation symmetry

GDR MEETICC

Banyuls, Feb. 2018

 \Rightarrow constraints between the orientations of the various symmetry axes / planes

Notation of the point groups – International (Hermann-Mauguin) symbol Symmetry operations along 1, 2 or 3 directions (primary, secondary, tertiary), ordered with decreasing or equal degree of symmetry (except for 2 cubic point groups)

The direction of a rotation is given by its axis4/mThe direction of a mirror is given by its normal $\frac{4}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m}$ (= 4/mm)'n/m' = axis n and normal to mirror m along same direction $\frac{4}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m}$ (= 4/mm)(*i.e.* plane of the mirror \perp to axis n)

There exists another notation: Schoenflies symbol \rightarrow widely used in spectroscopy

Examples :

GDR MEETICC

Banyuls, Feb. 2018

Order of the primary direction	e point symmetry secondary direction	y along the: tertiary direction	Point groups and Laue classes (short symbols)	
	_	_	1, 1	
2	_	_	2, m, 2/m	
2	2	2	222, 2 <i>mm</i> , <i>mmm</i>	
3 3	2	_	$3, \overline{3}$ 32, 3m, $\overline{3}m$	
4 4	2	2	$4, \overline{4}, 4/m$ 422, 4mm, $\overline{4}2m, 4/mm$	
6 6	2	2	6, 6 , 6/m 622, 6mm, 6 2m, 6/mmm	
2 4	3 3	2	23, $m\overline{3}$ 432, $43m$, $m\overline{3}m$	
GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaölle POUSSE 10				

Banyuls, Feb. 2018

• Example: dielectric properties

They can only be found for particular crystal symmetries

Piezoelectricity \rightarrow point groups that do not possess inversion

Ferroelectricity and pyroelectricity

→ piezolectric point groups (i.e. non centrosymmetric) with a unique polar axis ($\vec{p} \parallel n$ -axis and contained in the plane of the mirror):

> 1, 2, *m*, 2*mm*, 3, 3*m*, 4, 4*mm*, 6, 6*mm* **polar groups**

Banyuls, Feb. 2018

Point group: 3m $\rightarrow \exists$ dipolar moment (p = 1.46 Debye)

2. Translation Symmetry: Lattice and motif

At the atomic scale, \exists translation vectors \vec{T} that put the crystallographic structure in coincidence with itself.

 $\vec{T} = u\vec{a} + v\vec{b} + w\vec{c}$ with u, v, w integers (positive or negative)

 \vec{a}, \vec{b} , and \vec{c} are called the basis vectors

Banyuls, Feb. 2018

(non-coplanar elementary translation vectors defining a right-handed system). The volume they define is called the unit cell.

2. Translation Symmetry: Lattice and motif

Example 1 : terracotta floor tiles (2D)

2. Translation Symmetry: Lattice and motif

Example 2 : CsCl single-crystal (3D)

The unit cell allows to pave the space with no empty space nor overlap, by applying the lattice translations.

Examples at 2D:

Cnrs

<u>Rotation of **order 4**</u>: compatible with translation symmetry.

Rotation of **order 5** : not compatible with translation symmetry \rightarrow *quasicrystals*

• Multiplicity *m* of a unit cell: Number of lattice nodes (and thus of motifs) per unit cell How to count the number of lattice nodes per unit cell?

 \rightarrow each lattice node counts for 1/n, with n = number of unit cells to which it belongs

• Primitive unit cell: m = 1

C

GDR

Banyuls, Feb. 2018

For a given lattice, all primitive unit cells have the same volume V

• Centered unit cell: m = 2, 3 or 4 (doubly, triply ... primitive) \rightarrow Volume : $V_m = m V$ \rightarrow used only when more symmetrical than any primitive cell of the lattice

Primitive cells: 4 lattice nodes (on corners) \in 4 cells \rightarrow $m = 4 \times 1/4 = 1$

CINS

GDR MEET

Banyuls, Feb. 2018

Doubly primitive cell: 4 nodes (on corners) \in 4 cells \rightarrow 4 \times 1/4 = 1 + 2 nodes (on edges) \in 2 cells \rightarrow 2 \times 1/2 = 1 $\begin{cases} m = 2 \\ 2 \\ m = 2 \end{cases}$

<u>N.B.</u>: For a primitive cell, the translation vectors \vec{T} are defined by: $\vec{T} = u\vec{a} + v\vec{b} + w\vec{c}$ with u, v, w integers.

GDR MFFT

Banyuls, Feb. 2018

For a non primitive cell of multiplicity m, one must add (m - 1) translation vectors such as: $\vec{T} = u'\vec{a} + v'\vec{b} + w'\vec{c}$ with u', v', w' integers or fractionals

Ex.: For unit cell (2)
$$(m = 2)$$
:
$$\begin{cases} \vec{T}_1 = u\vec{a}' + v\vec{b}' \\ \vec{T}_2 = \vec{T}_1 + \frac{1}{2}(\vec{a}' + \vec{b}') = (u + \frac{1}{2})\vec{a}' + (v + \frac{1}{2})\vec{b}' \end{cases}$$

Translation and orientation (point) symmetries:

Banyuls, Feb. 2018

The crystals can be classified into 6 conventional cells and 7 crystal systems
each of them having a characteristic orientation symmetry

The 6 conventional cells are, by increasing degree of symmetry:				
а	triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma$	6
т	monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ}, \ \beta > 90^{\circ}$	4
0	orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	3
t	tetragonal or quadratic	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	2
h	hexagonal **	$a = b \neq c$	$\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$ *	2
С	cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	1

* $\gamma = 120^{\circ}$ and not 60° (for the hexagonal reciprocal lattice: $\gamma^* = 60^{\circ}$) ** The hexagonal conventional cell splits in two crystal systems: trigonal (axis 3) and hexagonal (axis 6); the 5 other ones are the same.

2. Translation Symmetry: Crystal system vs point group

Crystal system	Point groups and Laue classes	Primary direction	Secondary direction	Tertiary direction
triclinic	1,1	_		_
monoclinic	2, m, 2/m	\vec{b} (ou \vec{c})	_	_
orthorhombic	222, 2mm, mmm	â	$ec{b}$	Ċ

2. Translation Symmetry: Crystal system vs point group

Crystal system	Point groups and Laue classes	Primary direction	Secondary direction	Tertiary direction
triclinic	1,1	_	_	_
monoclinic	2, m, 2/m	\vec{b} (ou \vec{c})		
orthorhombic	222, 2mm, mmm	ā	$ec{b}$	\vec{c}
trigonal	$3,\overline{3}$ 32, 3m, $\overline{3m}$	Ċ	$\vec{a}, \vec{b}, -\vec{a}-\vec{b}$	_
tetragonal or quadratic	$4, \overline{4}, 4/m$ 422, 4mm, $\overline{4}2m, 4/mm$	Ċ	\vec{a}, \vec{b}	\vec{a} + \vec{b} , \vec{a} - \vec{b}
hexagonal	6, 6 , 6 / <i>m</i> 622, 6mm, 6 2m, 6/mmm	Ċ	$\vec{a}, \vec{b}, -\vec{a} \cdot \vec{b}$	2 <i>ā</i> + <i>b</i> ,

2. Translation Symmetry: Crystal system vs point group

Crystal system	Point groups and Laue classes	Primary direction	Secondary direction	Tertiary direction
triclinic	1,1		_	_
monoclinic	2, m, 2/m	$ec{b}$ (ou $ec{c}$)	_	_
orthorhombic	222, 2mm, mmm	ā	$ec{b}$	\vec{c}
trigonal	$3,\overline{3}$ 32, 3m, $\overline{3m}$	Ċ	$\vec{a}, \vec{b}, -\vec{a} \cdot \vec{b}$	_
tetragonal or quadratic	4, 4 , 4 / <i>m</i> 422, 4mm, 4 2m, 4 /mmm	Ĉ	\vec{a} , \vec{b}	\vec{a} + \vec{b} , \vec{a} - \vec{b}
hexagonal	6, 6 , 6 /m 622, 6mm, 6 2m, 6/mmm	Ċ	$\vec{a}, \vec{b}, -\vec{a} - \vec{b}$	2 <i>ā</i> + <i>b</i> ,
cubic	23, <u>m3</u> 432, 43m, m3m	$\vec{a}, \vec{b}, \vec{c}$	\vec{a} + \vec{b} + \vec{c} ,	<i>ā</i> + <i>b</i> ,

CNIS

GDR MEETICC

Banyuls, Feb. 2018

2. Translation Symmetry: *The 14 Bravais lattices*

- 6 primitive lattices (one for each of the 6 conventional cells),
- 8 non primitive ones, by adding nodes in the former cells, provided no symmetry element is lost & the centered cell is more symmetric than any primitive cell.

Symbole	Lattice mode	
Р	primitive	1
Ι	body centered	2
F	all face centered	4
A, B, C	A-, B-, C-face centered: $(\vec{b}, \vec{c}), (\vec{a}, \vec{c}), (\vec{a}, \vec{b})$ respectively	2
R	rhombohedrally centered: additional lattice nodes at 1/3 and 2/3 of the long diagonal of the h cell (\rightarrow trigonal system)	3

Cnrs

GDR MFFTICC

Banyuls, Feb. 2018

<u>N.B.</u>: the primitive cell of the hR cell is a rhombohedral cell $(a = b = c, \alpha = \beta = \gamma \neq 90^{\circ})$

2. Translation Symmetry: *The 14 Bravais lattices*

Cnrs

GDR MEETICC

Banyuls, Feb. 2018

2. Translation Symmetry: Example – the diamond structure

Si (diamond structure): cubic F lattice, motif = atoms at (0,0,0) and $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$

F lattice $(m = 4) \rightarrow$ lattice translations: $\vec{T}_1 = u\vec{a} + v\vec{b} + w\vec{c}, \vec{T}_2 = \vec{T}_1 + \frac{1}{2}(\vec{a} + \vec{b}), \vec{T}_3 = \vec{T}_1 + \frac{1}{2}(\vec{b} + \vec{c}), \vec{T}_4 = \vec{T}_1 + \frac{1}{2}(\vec{a} + \vec{c})$ \rightarrow 4 \times 2 = 8 Si atoms per unit cell with coordinates: $(0,0,0), (\frac{1}{2},\frac{1}{2},0), (0,\frac{1}{2},\frac{1}{2}), (\frac{1}{2},0,\frac{1}{2}), \text{and} (\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{3}{4},\frac{3}{4},\frac{1}{4}), (\frac{1}{4},\frac{3}{4},\frac{3}{4}), (\frac{3}{4},\frac{1}{4},\frac{3}{4}), (\frac{3}{4},\frac{3}{4},\frac{3}{4}), (\frac{3}{4},\frac{3}{4}), (\frac{3}{4},\frac{3}{4},\frac{3}{4}), (\frac$ $\frac{3}{4}$ $2^{\frac{1}{4}}$ $\frac{1}{2}$ Si on a tetrahedral site

GDR MFFT

Banyuls, Feb. 2018

2. Translation Symmetry: *Lattice directions* [*uvw*]

• Family of lattices directions

One can group all lattice nodes into parallel equidistant directions

labelled [uvw] along $\vec{n}_{uvw} = u\vec{a} + v\vec{b} + w\vec{c}$

 n_{uvw} (length of the direction vector): direction parameter u, v, w (coprime integers): direction indices

A family of lattice directions contains all lattice points.

• Examples:

Cubic unit cell: \rightarrow directions symmetrically equivalent are labeled (100)

• Family of net planes

One can group all lattice nodes into parallel equidistant net planes labelled (*hkl*) of equation: hx + ky + lz = m with *m* integer (> 0 or < 0)

The plane the closest to the origin (m = 1) intercepts the \vec{a} axis at 1/h, the \vec{b} axis at 1/k, and the \vec{c} axis at 1/l.

h, *k*, *l* (integers, which are coprime for a *P* lattice): Miller indices d_{hkl} (distance between 2 consecutive planes): *d*-spacing

A family of net planes contains all lattice points.

Symmetry relations between crystals: twinned crystals

Twinned crystal: association of identical single-crystals with different orientations, connected through a point group symmetry: <u>reflection</u>, <u>rotation</u>, <u>or inversion</u>.

Formation of twinned crystals

- Growth twins: occurs during the crystal growth;
- Annealing or Transformation twins: upon cooling (phase transition)
- <u>Deformation or gliding twins</u>: result of stress after the crystal has formed

Twinned pyrite crystal

Japanese twins of quartz

Symmetry relations between crystals: phase transitions

With no external stress (pressure, electric field, ...) : **3 different twins** with 2 domains at 180° each

Cn

Symmetry relations between crystals: phase transitions

2nd order phase transition:

Banyuls, Feb. 2018

There exist a group / subgroup relation between the 2 phases

<u>Example</u>: cooling down \rightarrow symmetry lowers (change of point group)

3. Space group symmetry

- Describe the symmetry of the internal structure of crystals
- Allow to classify all the crystals

Banyuls, Feb. 2018

- International Tables for Crystallography (ITC) (https://it.iucr.org)
- Bilbao Crystallographic Server (http://www.cryst.ehu.es)
- A Hypertext Book of Crystallographic Space Group Diagrams and Tables (<u>http://img.chem.ucl.ac.uk/sgp/mainmenu.htm</u>)

3. Space group symmetry

Edited for The Mark

| home | resources | purchase | contact us | help |

INTERNATIONAL TABLES Resources

| A | A1 | B | C | D | E | F | G |

Home > Resources

International Tables for Crystallography Resources

The following resources are available as part of International Tables Online:

· Search for a crystallographic symmetry group

- Powder CIF Dictionary
- Symmetry CIF Dictionary

3. Space group symmetry

(i) www.cryst.ehu.es

bilbao crystallographic server

Contact us	About us	Publications	How to
		Space-group symmetry	
GENPOS	Generators and C	General Positions of Space Groups	
WYCKPOS	Wyckoff Positions	s of Space Groups	
HKLCOND	Reflection conditi	ons of Space Groups	
MAXSUB	Maximal Subgrou	ups of Space Groups	
SERIES	Series of Maxima	I Isomorphic Subgroups of Space Groups	
WYCKSETS	Equivalent Sets of	of Wyckoff Positions	
NORMALIZER	Normalizers of Sp	pace Groups	
KVEC	The k-vector type	s and Brillouin zones of Space Groups	
SYMMETRY OPERATIONS	Geometric interpr	retation of matrix column representations of	f symmetry operations
IDENTIFY GROUP	Identification of a	Space Group from a set of generators in a	n arbitrary setting

img.chem.ucl.ac.uk/sgp/mainmenu.htm (i)

A Hypertext Book of **Crystallographic Space Group Diagrams and Tables**

High-Resolution Space Group

Diagrams and Tables

(1280 × 1024 pixel screens

Medium-Resolution Space Group Diagrams and Tables (1024 × 768 pixel screens)

GDR MEETICC

Banyuls, Feb. 2018

CNIS

• <u>Glide plane</u>

Combination of a reflection (through a plane) and a fractional translation $\vec{t} \parallel$ plane \uparrow acting inside the unit cell

Example: glide plane
$$a \perp \vec{c}$$
 at $z = \frac{1}{4}$
 $a \times a \rightarrow$ lattice translation
 $P_0 P_2 = \vec{a} \rightarrow [\vec{t} = \frac{\vec{a}}{2}]$
Seitz notation: $\{\alpha | \vec{t}_\alpha\} = \{m_z | \frac{1}{2}, 0, \frac{1}{2}\}$
 4×4 matrix: $\begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

 α : point symmetry

GDR MEETICC

Banyuls, Feb. 2018

Cnrs

 \vec{t}_{α} : translation embedding the glide translation + the position of α

3. Space group symmetry: symmetry planes

The various symmetry planes and their Hermann-Mauguin symbol

Drintad		Graphic symbol		Nature of the gliding	
symbol	Symmetry plane	⊥ projection plane	projection plane	(fractional translation \vec{t})	
m	mirror			none	
a, b, c	Axial glide plane	$\vec{t} \parallel \text{proj. plane}$ $\vec{t} \perp \text{proj. plane}$		a/2, b/2, or c/2 respectively	
е	Double glide plane			a/2 and $b/2$, $b/2$ and $c/2$, or $a/2et c/2; OR (a\pm b)/2 and c/2,etc for t and c systems$	
n	Diagonal glide plane			(a+b)/2, $(b+c)/2$ or $(c+a)/2$; OR $(a+b+c)/2$ in some cases for t and c systems	
d	Diamond glide plane		$\frac{\frac{1}{8}}{\frac{1}{8}}$	(a+b)/4, $(b+c)/4$ or $(c+a)/4$; OR $(a+b+c)/4$ in some cases for t and c systems	

• <u>Screw axes</u>

Combination of a rotation (around an axis *n*) and a fractional translation $\vec{t} \parallel$ axis

3. Space group symmetry: symmetry axes

CNIS

GDR MEETICC

Banyuls, Feb. 2018

3. Space group symmetry: symmetry axes

The various symmetry axes and their Hermann-Mauguin symbol (projection plane $\perp \vec{c}$)							
Printed symbol	Symmetry axis	Graphic symbol	Gliding \vec{t}	Printed symbol	Symmetry axis	Graphic symbol	Gliding \vec{t}
1	Identity	none	none	4	4-fold rotat°		none
1	Inversion	Ο	none	41	4-fold	X	c/4
	2-fold			42	screw	\	2 <i>c</i> /4
2	rotation	(⊥ plan proj.)	none	4 ₃	axes	$\mathbf{\bullet}$	3c/4
		(plan proj.)		4	4-fold	$\mathbf{\mathbf{A}}$	none
2	2-fold	(L plan proi)	c/2	6	6 fold rotat	• •	none
~ 1	axis		a/2 ou b/2	0			none
				6 ₁			c/6
3	3-fold	⊥ plan proj.		6 ₂	6-fold		2c/6
	rotation axis	A	none	6 ₃	screw	Ó	3c/6
31	2-fold		c/3	64	axes		4 <i>c</i> /6
32	axes		2c/3	6 ₅		I	, 5c/6
3	3-fold rotoinversion	٨	none	6	6-fold rotoinversion	٢	none

3. Space group symmetry: the 230 space groups

• International notation (Hermann-Mauguin symbol) Ex. $P4_2/mr$					
<u>1st letter</u> : capital letter designing the lattice mode <i>P</i> , <i>I</i> , <i>F</i> , <i>A</i> (<i>B</i> or <i>C</i>), <i>R</i> <u>Following letters</u> : nature of the symmetry elements					
Symmetry axes (with n max and p min) and planes ($m > e > a > b > c > n > d$) Along the primary, secondary, and tertiary directions: 3 non equivalent directions of symmetry (the same ones as point groups)					
Conventional cell	Primary direction	Secondary direction	Tertiary direction		
triclinic	A single symbol	(1 or $\overline{1}$), thus no direct	ion of symmetry		
monoclinic	A single directi	on of symmetry: <i>b</i> or <i>c</i>	(order 2, unique axis)		
orthorhombic	a (order 2)	<i>b</i> (order 2)	<i>c</i> (order 2)		
tetragonal	[001] (order 4)	< <u>100</u> >, i.e. <i>a</i> and <i>b</i> (order 2)	<110>, i.e. <u>a ± b</u> (order 2)		
hexagonal	<i>c</i> (order 6 or 3)	<100>, i.e. <i>a</i> , <i>b</i> , [110] (order 2)	<210>, i.e.[210], [120], [110] (order 2)		
cubic	<100> (order 4 or 2)	<111> (order 3)	<110> (order 2)		

CNIS

GDR MEETICC

Banyuls, Feb. 2018

3. Space group symmetry: the 230 space groups

cryst.	point	spac	e group		cryst.	point	space	e group	с	ryst.	point	space	e group	
syst.	group	No.	symbol		syst.	group	No.	symbol	s	yst.	group	No.	symbol	
a	1	1	<i>P</i> 1				51	Pmma				101	$P4_2cm$	
	1	2	$P\overline{1}$				52	Pnna				102	P42nm	
m	2	3	P2	-			53	Pmna				103	P4cc	
		4	P21				54	Pcca				104	P4nc	
		5	C2				55	Pbam				105	$P4_2mc$	
	т	6	Pm	-			56	Pccn				106	P42bc	
		7	Pc				57	Pbcm				107	I4mm	
		8	Cm				58	Pnnm				108	I4cm	
		9	Cc				59	Pmmn				190	$I4_1md$	
	2/m	10	P2/m	-			60	Pbcn				110	I41cd	
		11	$P2_1/m$				61	Pbca			$\overline{4}2m$	111	$P\overline{4}2m$	
		12	C2/m				62	Pnma				112	$P\overline{4}2c$	
		13	P2/c				63	Cmcm				113	$P\overline{4}2_1m$	
		14	$P2_1/c$				64	Cmce				114	$P\overline{4}2_1c$	
		15	C2/c				65	Cmmm				115	$P\overline{4}m2$	
0	222	16	P222	-			66	Cccm				116	$P\overline{4}c^2$	
		17	P222				67	Cmme				117	$P\overline{4}b2$	
		18	P2,2,2				68	Ccce				118	$P\overline{4}n2$	
		19	P2,2,2				69	Fmmm				119	$I\overline{4}m^2$	
		20	C2221				70	Fddd				120	$I\overline{4}c2$	
		21	C222				71	Immm				121	$I\overline{4}2m$	owned
		22	F222				72	Ibam				122	1 <u>4</u> 2d	evet
		23	1222				73	Ibca			4/mmm	123	P4/mmm	_ 5,50
		24	12,2,2,				74	Imma				124	P4/mcc	
	mm?	25	Pmm2	-	t	4	75	P4	-2			125	P4/nhm	
		26	Pmc2		<i>.</i>		76	P4.				126	P4/nnc	
		27	Pcc2				77	P42				127	P4/mhm	
		28	Pma2				78	$P4_2$				128	P4/mnc	
		29	Pca2				79	14				129	P4/nmm	
		30	Pnc2				80	14				130	P4/nnc	
		31	Pmn2.			Ā	81	$\frac{P\overline{4}}{P\overline{4}}$	-			131	P4-/mmc	
		32	Pha?				82	14				132	P42/mcm	
		33	Pna2			4/m	83	P4/m	-			133	$P4_2/nhc$	
		34	Pnn2			-1111	84	$P4_2/m$				134	P42/nnm	
		35	Cmm2				85	P4/n				135	P42/mbc	
		36	Cmc2				86	$P4_2/n$				136	P42/mnm	
		37	Ccc2				87	I4/m				137	P42/nmc	
		38	Amm2				88	$I4_1/a$				138	P42/ncm	
		39	Aem2			422	89	P422				139	I4/mmm	
		40	Ama?				90	P42,2				140	I4/mcm	
		41	Aea2				91	P4,22				141	14 Jamd	h
		42	Fmm2				92	P41212				142	I4 Jacd	~
		43	Edd				93	P4,22		h	3	143	P3	-
		43	Imm2				94	P4222		n	5	144	P3.	
		45	Tha?				95	P42212				145	P32	
		45	Ima				95	P4322				145	R3	
	11111111	40	Pmmm	-			90	143212			3	140	P3	-
	mm	47	Pnnn				98	14.22			5	147	$R\overline{3}$	
		40	Pccm			4mm	00	P4mm			32	140	P312	-
		50	Phan			ann	100	P4hm			52	150	P321	
		50	1 Dun				100	1 -011				150	1 521	

6 conventional cells 14 Bravais lattices (translation symmetry)

32 point groups Symmetry at the *macroscopic* scale

230 space groups Symmetry at the *microscopic* scale

symbol

P6122 P6522 P6222 P6422 P6322 P6mm P6cc P63cm P63mc $P\overline{6}m2$ $P\overline{6}c2$ $P\overline{6}2m$ $P\overline{6}2c$ P6/mmm P6/mcc P6/mcm P6/mmc P23 F23 123 $P2_{1}3$ 1213 Pm 3 $Pn\overline{3}$ Fm 3 Fd3 $Im \overline{3}$

SI

point	point space group		cryst.	point	space grou		
group	No.	symbol	syst.	group	No.	symbo	
	151	P3112			178	P612	
	152	P3121			179	P65	
	153	P3212			180	P622	
	154	P3221			181	P64	
	155	R32			182	P632	
3 <i>m</i>	156	P3m1		6mm	183	P6n	
	157	P31m			184	P6c	
	158	P3c1			185	P63	
	159	P31c			186	P63	
	160	R3m		$\overline{6}m2$	187	P61	
	161	R3c			188	PG	
$\overline{3}m$	162	$P\overline{3}1m$			189	$P\overline{6}$	
	163	$P\overline{3}1c$			190	P6:	
	164	$P\overline{3}m1$		6/mmm	191	P6/1	
	165	$P\overline{3}c1$			192	P6/1	
	166	$R\overline{3}m$			193	P6/1	
	167	R3c			194	P6/1	
6	168	<i>P</i> 6	С	23	195	P23	
	169	$P6_1$			196	F23	
	170	P65			197	123	
	171	$P6_2$			198	P21	
	172	$P6_4$			199	1213	
	173	$P6_3$		<i>m</i> 3	200	Pm	
6	174	$P\overline{6}$	-		201	Pn	
6/m	175	P6/m	-		202	Fm	
	176	$P6_3/m$			203	Fd3	
622	177	P622	-		204	Im	

yst.	point	space	egroup
st.	group	No.	symbol
		205	$Pa\overline{3}$
		206	$Ia\overline{3}$
	432	207	P432
		208	P4232
		209	F432
		210	F4132
		211	<i>I</i> 432
		212	P4332
		213	P4132
		214	<i>I</i> 4 ₁ 32
	$\overline{4} 3m$	215	$P\overline{4}3m$
		216	$F\overline{4}3m$
		217	$I\overline{4}3m$
		218	$P\overline{4}3n$
		219	$F\overline{4}3c$
		220	143d
	m 3 m	221	Pm3m
		222	$Pn\overline{3}n$
		223	$Pm\overline{3}n$
		224	$Pn\overline{3}m$
		225	Fm 3m
		226	Fm 3 c
		227	Fd3m
		228	Fd3c
		229	$Im\overline{3}m$
		230	Ia3d

Banyuls, Feb. 2018

Banyuls, Feb. 2018

Wyckoff sites: List of the different sites from the most general (*i.e.* less symmetrical) to the less general position (*i.e.* most symmetrical: special position)

Banyuls, Feb. 2018

Wyckoff sites: List of the different sites from the most general (*i.e.* less symmetrical) to the less general position (*i.e.* most symmetrical: special position)

Positions Multiplicity, Wyckoff letter,	Coordin	ates	
$\begin{array}{c c} 8 & d \\ \hline 1 \\ (5) \\ \hline x, \\ y, \\ \hline y, \\ \end{array}$	z (2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}$	(3) $\bar{x}, y + \frac{1}{2}, \bar{z}$	(4) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{2}$
	\bar{z} (6) $x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}$	(7) $x, \bar{y} + \frac{1}{2}, z$	(8) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$

Symmetry operations

(1) 1	(2)	$2(0,0,\frac{1}{2})$	$\frac{1}{2},0,z$ (3)	$2(0, \frac{1}{2}, 0)$	0,y,0 (4)	$2(\frac{1}{2},0,0)$	x, ±, ±
(5) 1 0	,0,0 (6)	$a x, y, \frac{1}{4}$	(7)	$m x, \frac{1}{4}, z$	(8)	$n(0,\frac{1}{2},\frac{1}{2})$	1,y,z

Wyckoff sites: List of the different sites from the most general (*i.e.* less symmetrical) to the less general position (*i.e.* most symmetrical: special position)

Cnrs

CINS

GDR MEETICC

Banyuls, Feb. 2018

Careful: different order as compared to the ITC!

bilbao crystallographic server

Space-group symmetry

WYCKPOS

Cnrs

Wyckoff Positions of Group 62 (Pnma)

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
8	d	1	$\begin{array}{l} (x,y,z) & (-x+1/2,-y,z+1/2) \ (-x,y+1/2,-z) \ (x+1/2,-y+1/2,-z+1/2) \\ (-x,-y,-z) \ (x+1/2,y,-z+1/2) \ (x,-y+1/2,z) \ (-x+1/2,y+1/2,z+1/2) \end{array}$
4	С	.m.	(x,1/4,z) (-x+1/2,3/4,z+1/2) (-x,3/4,-z) (x+1/2,1/4,-z+1/2)
4	b	-1	(0,0,1/2) (1/2,0,0) (0,1/2,1/2) (1/2,1/2,0)
4	a	-1	(0,0,0) (1/2,0,1/2) (0,1/2,0) (1/2,1/2,1/2)

Wyckoff position and site symmetry group of a specific point

Specify the point by its relative variable param	ative coordinate meters (x,y,z) are	s (in fractions or decimals) also accepted
x =	y =	z =
	Show	

http://www.cryst.ehu.es/

GDR MEETICC

Banyuls, Feb. 2018

If you want to see the Wyckoff position in other setting, click here

ΙΤϹ	8 <i>d</i> 1	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$	(2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}$ (6) $x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}$	(3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$
JCr	Symmetry operation	ations			
	$\begin{array}{cccc}(1) & 1\\(5) & 1 & 0,0,0\end{array}$	(2) $2(0,0,\frac{1}{2})$ (6) $a x, y,$	$\frac{1}{4}, 0, z$ (3) 2($\frac{1}{4}$ (7) m	$(0, \frac{1}{2}, 0)$ 0, y, 0 x, $\frac{1}{4}, z$	(4) $2(\frac{1}{2},0,0) x,\frac{1}{4},\frac{1}{4}$ (8) $n(0,\frac{1}{2},\frac{1}{2}) \frac{1}{4},y,z$

bilbao crystallographic server

Space-group symmetry

General Positions of the Group 62 (Pnma)

GENPOS

Cnrs

Click here to get the general positions in text format

No	(x y z) form	Matrix form	Symmetry operation			
NO.	(x,y,z) 101111	Matrix form	ITA	Seitz 🔮		
1	X,y,Z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	{1 0}		
2	-x+1/2,-y,z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	2 (0,0,1/2) 1/4,0,z	{ 2 ₀₀₁ 1/2 0 1/2 }		

Same order

GDR MEETICC

Banyuls, Feb. 2018

Exam	n <mark>ple:</mark> LaMnO ₃ (sp	bace group P	Pnma)		$(\equiv Pbnm \text{ if } \vec{a} \rightarrow \vec{b} \rightarrow \vec{c} \rightarrow \vec{a}$
La Mn O ₁ O ₂	x 0.518 0 -0.005 0.288	y 0.25 0 0.25 0.096	z 0.007 0 0.075 0.226	$ \begin{array}{c} \rightarrow 4c \\ \rightarrow 4a \\ \rightarrow 4c \\ \rightarrow 8d \end{array} $	→ Motif = $La_4Mn_4O_{12}$ 7 coordinates to determine out of (4+4+12)×3 = 60 !!!
	Positions Multiplicity, Wyckoff let Site symmet	ter, ry	Coor	dinates	
	$O_2 \otimes d$	$\begin{array}{c} (1) \ x, y, z \\ (5) \ \overline{x}, \overline{y}, \overline{z} \end{array}$	(2) $\bar{x} + \frac{1}{2}, \bar{y}, z +$ (6) $x + \frac{1}{2}, y, \bar{z} +$	$\frac{1}{2}$ (3) \bar{x}, y $\frac{1}{2}$ (7) x, \bar{y}	$\begin{array}{rcl} +\frac{1}{2}, \overline{z} & (4) \ x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2} \\ +\frac{1}{2}, z & (8) \ \overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2} \end{array}$
	La, $O_1 \stackrel{4}{\underbrace{}} c$. 4 b \overline{b} Mn $\underbrace{}$ a \overline{b}	$\begin{array}{ccc} m & x, \frac{1}{4}, z \\ \hline & 0, 0, \frac{1}{2} \\ \hline & 0, 0, 0 \end{array}$	$\bar{x} + \frac{1}{2}, \frac{3}{4}, z + \frac{1}{2}$ $\frac{1}{2}, 0, 0 0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, 0, \frac{1}{2} 0, \frac{1}{2}, 0$	$\bar{x}, \frac{3}{4}, \bar{z} \qquad x + \frac{1}{2}, \\ \frac{1}{2}, \frac{1}{2}, 0 \\ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \overline{z} + \frac{1}{2}$

CNIS

GDR MEETICC

Banyuls, Feb. 2018

		Crysta	llography Op	en l Sea	Dat rch	aba	ase	()	
	Home		(For more informa	tion on se	earch se	e the hi	nts and	tips)	
	What's new?		Search by COD ID:					Searc	:h
	Accessing COD Data Browse Search Search by structural formula		OpenBabel FastSearch:	ter <u>SMIL</u>	<u>ES</u> :		s	earch	
	Add Your Data	Note: sub	structure search by SMILES is curr	ently avail	lable in :	a subset	of COD	contain	ing 157980 s
	Deposit your data		text (1 or 2 words)						
	Manage depositions		journal						
	Manage/release		year						
	prepublications		volume						
	Documentation		issue						
	COD Wiki		DOI						
	Obtaining COD		Z (min, max)						
	Citing COD		Z' (min, max)						
	COD Mirrors Advices to donators		chemical formula (<u>in Hill notation</u>)						
	Useful links		1 to 8 elements	La	Mn	0			
		ĺ	NOT these elements						
		i	volume min and max				Î		
		ĺ	number of distinct elements min and max			3]	
//www.crystallogr	aphy.net/cod/sear	<u>rch.html</u>	filters		has Fot include include	e duplica structure theoret	tes res with ical struc	errors	
GDR MEETICC Banyuls, Feb. 2018			Reset			s	end		

http://www.cryst

CNIS

```
#$Date: 2016-02-13 21:28:24 +0200 (Sat, 13 Feb 2016) $
#$Revision: 176429 $
#$URL: svn://www.crystallography.net/cod/cif/1/52/13/1521337.cif $
# This file is available in the Crystallography Open Database (COD),
# http://www.crystallography.net/
# All data on this site have been placed in the public domain by the
# contributors.
data 1521337
loop
publ author name
'Mori, T.'
'Inoue, K.'
'Kamegashira, N.'
publ section title
:
 Phase behaviour in the system Lax Sr1-x Mn O(5+x)/2 (x=0.8-1.0) with
 trivalent state of manganese ion
:
journal name full
                                 'Journal of Alloys Compd.'
                                                                                   loop
journal page first
                                 87
journal page last
                                 93
journal_volume
                                 308
journal year
                                 2000
                                 'La Mn O3'
chemical formula sum
                                  'La (Mn O3)'
chemical name systematic
space group IT number
                                 62
                                 '-P 2ac 2n'
_symmetry_space_group_name_Hall
symmetry_space group name H-M
                                 'Pnma'
cell angle alpha
                                 90
                                 90
cell angle beta
                                 90
cell angle gamma
 cell formula units Z
                                 4
                                 5.7478
cell length a
cell length b
                                 7.6921
 cell length c
                                 5.5352
                                 244.726
cell volume
_citation_journal id ASTM
                                 JALCEU
 cod data source file
                                 Mori JALCEU 2000 1413.cif
cod data source block
                                 La1Mn103
cod original cell volume
                                 244.7259
cod original formula sum
                                 'La1 Mn1 03'
 cod database code
                                 1521337
```

GDR MEETICC

Banyuls, Feb. 2018

.cif file for LaMnO₃

	_symmetry_equiv_pos_as_xyz
	x,y,z
	-x+1/2,-y,z+1/2
	x+1/2,-y+1/2,-z+1/2
	-x,y+1/2,-z
	-x,-y,-z
	x-1/2,y,-z-1/2
	-x-1/2,y-1/2,z-1/2
	x,-y-1/2,z
1	loop_
	_atom_site_label
	atom_site_type_symbol
	atom_site_fract_x
	_atom_site_fract_y
	_atom_site_fract_z
	_atom_site_occupancy
	atom site U iso or equiv
	Mn1 Mn+3 0 0 0.5 1 0.0
	02 0-2 0.194 0.537 0.223 1 0.0
	La1 La+3 0.0495 0.25 -0.083 1 0.0
	01 0-2 0.474 0.25 0.07 1 0.0

52

-	Year ⊾	Authors	Title	Struct. Formula	sgr	Mineral			
	2004	Hansteen, O.H.; Breard, Y.; Fjellvag, H.; Hauback, B.C.;	Divalent manganese in reduced La Mn O3-d - effect of oxygen nonstoichiometry on structural and magnetic properties	La (Mn O2.78)	PNMA				
	2000	Cherepanov, V.A.; Filonova, E.A.; Voronin, V.I.; Berger, I.F.;	Phase equilibria in the (La Co O3) - (La Mn O3) -(Ba Co Oz) (Ba Mn O3) system	La Mn O3	PNMA				
	1999	Taguchi, H.; Matsu-ura, SI.; Nagao, M.; Kido, H.;	Electrical properties of perovskite-type La (Cr1-x Mnx) O3+d	La0.951 Mn0.951 O3	R3-CR				
	1997	Ferris, V.; Goglio, G.; Brohan, L.; Joubert, O.; Molinie, P.; Ganne, M.; Dordor, P.;	Transport properties and magnetic behavior in the polycrystalline lanthanum-deficient manganate perovskite (La(1-x) Mn O3)	La0.91 (Mn0.99 O3)	R3CR				
	1997	Alonso, J.A.; Martinez-Lopez, M.J.; Casais, M.T.; MacManus-Driscoll, J.L.; de Silva, P.S.I.P.N.; Cohen, L.F.; Fernandez-Diaz, M.T.;	Non-stoichiometry, structural defects and properties of La Mn O3+d with high d values (0.11	La0.969 Mn0.93 O3	R3-CH				
	1996	Shimura, T.; Hayashi, T.; Inaguma, Y.; Itoh, M.;	Magnetic and electrical properties of Lay Ax Mnw O3 (A = Na, K, Rb and Sr) with perovskite-type structure	La0.953 Mn0.935 O3	R3-CH				
	1996	Hauback, B.C.; Fjellvag, H.; Sakai, N.;	Effect of nonstoichiometry on properties of La1-t Mn O3+d. III. Magnetic order studied by neutron powder diffraction	La0.92 Mn O2.88	PNMA				
	1996	Hauback, B.C.; Fjellvag, H.; Sakai, N.;	Effect of nonstoichiometry on properties of La1-x Mn O3+delta III. Magnetic order studied by powder neutron diffraction	La0.88 Mn O2.82	PNMA				
Page : [1](8 results) 10 🔻 results per page.									
Cni	GDR MEETICC								

Banyuls, Feb. 2018

🕹 LaMnO3Cherepanov,V.A.(2000) - Mozilla Firefox	🕹 LaMnO3Cherepanov,V.A.(2000) - Mozilla Firefox
🛞 icsd. ill.eu /icsd/cifdraw.php?filen=tmp/mut388.cif&id[]=62685&sformula=LaMnO3Cherepanov,V.A.	🛞 icsd.ill.eu/icsd/cifdraw.php?filen=tmp/mut388.cif&id[]=62685&sformula=LaMnO3Chere
	Immodel Cherepanov, V.A. (2000) # = 5, 482 Å h= 7, 778 Å e= 50, 0° #= 90, 0° Y= 90, 0°
atoms 25% 🔹 🗆 FIZ-radii 🗹 bond 🗹 poly 🗌 label 🗆 persp 🗹 B/G 🗹 Hbonds 🖾 anim 🗖	atoms 25% 🗸 🗖 FIZ-radii 🗹 bond 🗋 poly 🗖 label 🗐 persp 🖉 B/G 🖉 Hbonds 🛙
Select Create colour V 0.75 to 2.6 a= 1 b= 1 c= 1 Big Reloa	Select Create colour \bullet 0.75 to 2.6 a = 1 b = 1 c = 1 Big
Jmol script terminated 2: Parcourir_ Plot Print HELP	Jmol script terminated P: Parcourir_ Plot Print

<u>Fichier Edition Affichage Historique Marque-pages Outils ?</u>														
J K ICSD for WWW × +														
🔶 🗲 访 icsd.ill.eu/icsd/index.php?action=Search&page=1&nb_rows=10ℴ_by=yearDesc&auth 🖾 C 🔍 Rechercher 🟠 🖨 🗸 🔅											2	≡		
см-с	CM-CIC 🔊 - icsdilleu													
	•													
	A	uthors/Code	Years		Journal		Title/Comm	ent		0	Help			
		Flammata	Element Count		Chang (Minang Liting a					Searc	Effa	cer		
	La M	Elements n O	Biement Count		Chem/Mineral Name		ANX/Pearson/s	5.Type		Cell	size/mas	5		
	Ed In	System	Laue Class		Centering		Space Gro	up		Wycko	ff Seaue	nce		
	any	- -	any -		any 🔹									_
		Remarks	Min. Distance		Distance Select		Distance Ra	nge		Co	o-ordin.			=
Quer	Query : (EL_COUNT = "3") AND icsd.sum_form RLIKE 'LA[0-9]' AND icsd.sum_form RLIKE 'MN[0-9]' AND icsd.sum_form RLIKE BINARY 'O[0-9]'													
	Select	All / None 8 Resul	lts		Ref	erences	ndNote Detail	s CIF	Bonds	Pattern	Struct	re	1mol	
÷ ,	(ear 🗚	Authors			Title				Struct. Fo	rmula		r M	ineral	i U
2	2004	Hansteen, O.H.; Breard, Y.; Fj Hauback, B.C.;	jellvag, H.;	Divalent mang nonstoichiome	janese in reduced La Mi etry on structural and m	n O3-d - effe agnetic prop	ct of oxygen erties	La (Mn C	02.78)		PN	1A		
 2	2000	Cherepanov, V.A.; Filonova, E Berger, I.F.;	E.A.; Voronin, V.I.;	Phase equilibr Mn O3) syster	ia in the (La Co O3) - (L n	.a Mn O3) -(B	a Co Oz) (Ba	La Mn O	3		PNI	1A		
1	999	Taguchi, H.; Matsu-ura, SI.; H.;	Nagao, M.; Kido,	Electrical prop	erties of perovskite-typ	e La (Cr1-x M	4nx) 03+d	La0.951	Mn0.951	03	R3-	CR		
1	.997	Ferris, V.; Goglio, G.; Brohan, Molinie, P.; Ganne, M.; Dordo	L.; Joubert, O.; r, P.;	Transport pro lanthanum-de	perties and magnetic be ficient manganate pero	ehavior in the vskite (La(1-:	e polycrystalline x) Mn O3)	La0.91 ((Mn0.99 O	3)	R30	R		
1	997	Alonso, J.A.; Martinez-Lopez, MacManus-Driscoll, J.L.; de Sil Cohen, L.F.; Fernandez-Diaz,	M.J.; Casais, M.T.; Iva, P.S.I.P.N.; M.T.;	Non-stoichiom O3+d with hig	etry, structural defects h d values (0.11	and properti	es of La Mn	La0.969	Mn0.93 C	3	R3-	СН		
1	996	Shimura, T.; Hayashi, T.; Inag	guma, Y.; Itoh, M.;	Magnetic and Rb and Sr) wit	electrical properties of h perovskite-type struc	Lay Ax Mnw (ture	03 (A = Na, K,	La0.953	Mn0.935	03	R3-	СН		
1	1996 Hauback, B.C.; Fjellvag, H.; Sakai, N.;			Effect of nonstoichiometry on properties of La1-t Mn O3+d. III. Magnetic order studied by neutron powder diffraction			La0.92 Mn 02.88 PN			1A				
1	1996 Hauback, B.C.; Fjellvag, H.; Sakai, N.;			Effect of nonstoichiometry on properties of La1-x Mn O3+delta			La0.88 Mn O2.82 PNMA							

III. Magnetic order studied by powder neutron diffraction

Page : [1](8 results) 10 - results per page.

🖉 ICSD for WWW : Details - Mozilla Firefox										
🕘 icsd.ill.eu/icsd/details.php?id[]=62685										
ICSD for WWW Details of the selected entries										
Print 1 entry selected. CC=Collection Code: [AB2X4]=ANX Form: [cF56]=Pearson: [e d a]=Wyckoff Symbol: [Al2MgO4]=Structure Type: ***Click the ANX, Pearson or Wyckoff Symbol to find structures with that symbol***.										
CC=91175	i		Help CIF	✓ Export	Bonds Pattern	Structure Jmol				
Title	Phase equilibria	Phase equilibria in the (La Co O3) - (La Mn O3) -(Ba Co Oz) (Ba Mn O3) system.								
Authors	Cherepanov, V.A	Cherepanov, V.A.;Filonova, E.A.;Voronin, V.I.;Berger, I.F.								
Reference	Journal of Solid State Chemistry (2000) 153, 205-211 Link XRef SCOPUS SCIRUS Google									
Compound	d La1 Mn1 O3 - La	anthanum man	ganese trioxide [ABX3	3] [oP20] [d c2 a] []	:				
Cell	5.4820(9), 7.778(2), 5.5253(9), 90., 90., 90. PNMA (62) V=235.59									
Remarks	RVP XDP At least one temperature factor missing in the paper. The coordinates are those given in the paper but the atomic distances do not agree with those calculated during testing.The coordinates are probably correct. No R value given in the paper.									
			x, y, z, B, Occupar	ncy						
Atom (site	e) Oxid.									
Atom (site	e) Oxid. (4c)	3	0.5184(4)	0.25	0.007(2)	0 1				
Atom (site La1 Mn1	(4c) (4a)	3 3	0.5184(4) 0	0.25 0	0.007(2) 0	0 1 0 1				
Atom (site La1 Mn1 O1	(4c) (4a) (4c)	3 3 -2	0.5184(4) 0 005(7)	0.25 0 0.25	0.007(2) 0 0.075(1)	0 1 0 1 0 1				

Cnr

Current PHP version: 4.3.8 - Current MySQL version: 4.0.21

Demo database (The Full database will be used if available after the first query is entered)

Copyright 2003-2011 Fachinformationszentrum (FIZ) Karlsruhe

3. Space group symmetry: *space group I4mm*

 C_{4v}^9 Symmorphic SG Tetragonal m m4 mmNo. 107 I4mmI4/mmmPatterson symmetry όÔ $\stackrel{+}{\odot} \stackrel{+}{\odot}$ +O ()+ •+ +0 +() 0+ 0 Q Ò \odot \odot \odot 1+O $\bigcirc \frac{1}{2}$ + 1/2+0 $O^{\frac{1}{2}+}$ $O_{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+}$ \odot \odot • +0 **⊙**+ 0+ +() \odot Origin on 4mm Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le \frac{1}{2}; \quad x \le y$ Symmetry operations For (0,0,0) + set (4) 4^{-} 0,0,z (3) 4⁺ 0,0,z (2) 2 0,0,z (1) 1(7) $m x, \overline{x}, z$ (6) m = 0, y, z(8) m x, x, z(5) m = x, 0, zFor $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set (3) $4^+(0,0,\frac{1}{2}) \quad 0,\frac{1}{2},z$ (4) $4^{-}(0,0,\frac{1}{2}) = \frac{1}{2},0,z$ (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},\frac{1}{4},z$ (8) $n(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) x, x, z$ (6) $n(0, \frac{1}{2}, \frac{1}{2}) = \frac{1}{4}, y, z$ (7) $c x + \frac{1}{2}, \bar{x}, z$ (5) $n(\frac{1}{2},0,\frac{1}{2}) x,\frac{1}{4},z$

Bravais lattice: body centered (*I*) tetragonal Axis 4 $\parallel \vec{c}$; mirrors $m \perp <100>$; mirrors $m \perp <110>$

Cnrs

GDR MEETICC

Banyuls, Feb. 2018

3. Space group symmetry: space group I4mm

S	notions	1 fold rotation a	nalied 2 1 and 2 times resp
Symmetry ope	Fations	4-1010 101ation a	ipplied 2, 1, and 5 times, resp.
For $(0,0,0)$ + s		$(3) 4^+ 0 0 \pi$	(4) 4- 0 0 7
(1) 1 (5) m r 0 7	(2) 2 0, 0, z (6) m 0, y, z	(3) 4 0,0,2 (7) m x. $\bar{x}.z$	(4) (4) $(5,0,2)(8) m x,x,z$
(3) m x, 0, 2	(0) 0,,,,,	(.),.,.	
(For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + s		(2) $(1+(0,0,1))$ $(0,1)$	
(1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $r(1, 0, 1)$	$(2) 2(0,0,\frac{1}{2}) \frac{1}{4},\frac{1}{4},z$	(3) $4^+(0,0,\frac{1}{2}) 0,\frac{1}{2},2$ (7) $C x + \frac{1}{2}, \overline{x}, z$	(4) $4^{(0,0,\frac{1}{2})}$ $\frac{1}{2}$, 0, 2 (8) $n(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ x, x, z <i>I</i> lattice
$(3) n(\frac{1}{2}, 0, \frac{1}{2}) x$,4,2 (0) <i>n</i> (0,2,2) 4,9,2	() C x 2,x,2	
	Generators selected (1); $t(1,0)$,	0); t(0,1,0); t(0,0,1)	(1, 1, 1, 1); (2); (3); (5)
	Positions		
	Multiplicity,	Coordinates	
	Site symmetry (0,0,0	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) +$	I lattice
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	z (3) y, x, z (4) $yz (7) \overline{y}, \overline{x}, z (8) y$	y, x, z y, x, z
			Add (0,0,0) and (1/2 1/2 1/2)
			to these coordinates
		o o -	$\rightarrow 8 \times 2$ atomic coordinates
	$8 \ d \ .m \ . \ x, 0, z \ \bar{x}, 0, z$	0,x,z $0,x,z$	
	$8 c \dots m \qquad x, x, z \overline{x}, \overline{x}, z$	$\bar{x}, x, z = x, \bar{x}, z$	
	$4 \ b \ 2mm, \ 0, \frac{1}{2}, z \ \frac{1}{2}, 0, z$		
	2 a 4mm 0,0,z		

CNIS

GDR MEETICC

Banyuls, Feb. 2018

Summary

Point group symmetry:

Allows to predict the existence or not of some macroscopic physical properties And in the case they do exist, the direction of the vectorial quantity or form of the tensor, ...

Translation symmetry:

Responsible for diffraction \rightarrow see lecture III

Structure completely described by:

Space group + lattice parameters + asymetric unit

Then use Wyckoff positions to calculate the coordinates of the other atoms of the motif, and last the lattice translations

The same approach can be done for magnetic structures \rightarrow see lecture II

Point group: to go further ...

From crystallographic point groups ...

2mm

3m

4mm

6mm

GDR MEETICC

Banyuls, Feb. 2018

Cnrs

Thank you et bonne dégustation

http://materials.cmu.edu/degraef/pg/