

GDR MEETICC

Matériaux, Etats ElecTroniques, Interaction et Couplages non Conventionnels

Winter school

4 – 10 February 2018, Banyuls-sur-Mer, France

CRYSTALLOGRAPHIC and MAGNETIC STRUCTURES from NEUTRON DIFFRACTION: the POWER of SYMMETRIES (Lecture II)

&

Béatrice GRENIER

UGA & CEA, INAC/MEM/MDN

Grenoble, France

Gwenaëlle ROUSSE

UPMC & Collège de France,

Paris, France

Global outline (Lectures II, and III)

II- Magnetic structures

Description in terms of propagation vector: *the various orderings, examples* **Description in terms of symmetry**:

Magnetic point groups: time reversal, the 122 magnetic point groups Magnetic lattices: translations and anti-translations, the 36 magnetic lattices Magnetic space groups = Shubnikov groups

III- Determination of nucl. and mag. structures from neutron diffraction Nuclear and magnetic neutron diffraction: *structure factors, extinction rules* Examples in powder neutron diffraction Examples in single-crystal neutron diffraction

Interest of magnetic structure determination ?

Some material from: J. Rodriguez-Carvajal, L. Chapon and M. Perez-Mato was used to prepare Lectures II and III

Interest of magnetic structure determination

	1.	A PROFILE REFINEMENT METHOD FOR NUCLEAR AND MAGNETIC STRUCTURES By: RIETVELD, HM JOURNAL OF APPLIED CRYSTALLOGRAPHY Volume: 2 Pages: 65-& Part: 2 Published: 1969 Full Text from Publisher	Times Cited: 9,529 (from Web of Science Core Collection) Usage Count ~
	2. N	RECENT ADVANCES IN MAGNETIC-STRUCTURE DETERMINATION BY NEUTRON POWDER DIFFRACTION By: RODRIGUEZCARVAJAL, J Conference: WORKSHOP ON THE USE OF NEUTRONS AND X-RAYS IN THE STUDY OF MAGNETISM Location: GRENOBLE, FRANCE Date: JAN 21-23, 1993 Sponsor(s): INST LAUE LANGEVIN; EUROPEAN SYNCHROTRON RADIAT FACIL PHYSICA B Volume: 192 Issue: 1-2 Pages: 55-69 Published: OCT 1993	Times Cited: 6,185 (from Web of Science Core Collection) Usage Count 🛩
		Full Text from Methods and Computing Programs	
	3.	Magnetic control of ferroelectric polarization	Times Cited: 2,562
		By: Kimura, T; Goto, T; Shintani, H; et al. NATURE Volume: 426 Issue: 6962 Pages: 55-58 Published: NOV 6 2003	(from Web of Science Core Collection)
		Full Text from Publisher View Abstract Multiferroics	Usage Count 🛩
	4.	Physics and Applications of Bismuth Ferrite	Times Cited: 1,548
		By: Catalan, Gustau; Scott, James F. ADVANCED MATERIALS Volume: 21 Issue: 24 Pages: 2463-2485 Published: JUN 26 2009	(from Web of Science Core Collection)
		Full Text from Publisher View Abstract	Usage Count 🗸
	5.	Magnetic order close to superconductivity in the iron-based layered LaO(1-x)F(x)FeAs systems By: de la Cruz, Clarina; Huang, Q.; Lynn, J. W.; et al. NATURE Volume: 453 Issue: 7197 Pages: 899-902 Published: JUN 12 2008 Full Text from Publisher View Abstract	Times Cited: 1,404
G Ba	DR I nyuls	MEETICC 5, Feb. 2018 Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENI	ER & <u>Gwenaëlle ROUSSE</u>

2

Chrs

Interest of magnetic structure determination

Nano particles	 6. Magnetic nanoparticles By: Kodama, RH JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS Volume: 200 Issue: 1-3 Pages: 359-372 Published: OCT 1999 Full Text from Publisher View Abstract 7. Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3 By: Radaelli, PG; Cox, DE; Marezio, M; et al. PHYSICAL REVIEW B. Volume: 55 Issue: 5. Pages: 3015-3023. Published: FEB 1 1997 	Times Cited: 986 (from Web of Science Core Collection) Usage Count ∽ Times Cited: 751 (from Web of Science Core Collection)
	Full Text from Publisher View Abstract	Usage Count 🗸
Multiferroics	 Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 By: Kenzelmann, M; Harris, AB; Jonas, S; et al. PHYSICAL REVIEW LETTERS Volume: 95 Issue: 8 Article Number: 087206 Published: AUG 19 2005 Full Text from Publisher View Abstract 	Times Cited: 526 (from Web of Science Core Collection) Usage Count ~
Computing Methods	 9. Crystallographic Computing System JANA2006: General features By: Petricek, Vaclav; Dusek, Michal; Palatinus, Lukas ZEITSCHRIFT FUR KRISTALLOGRAPHIE Volume: 229 Issue: 5 Pages: 345-352 Published: 2014 Full Text from Publicher View Abstract 	Times Cited: 489 (from Web of Science Core Collection)
Manganites, charge ordering orbital ordering	 10. Direct observation of charge and orbital ordering in La0.5Sr1.5MnO4 By: Murakami, Y; Kawada, H; Kawata, H; et al. PHYSICAL REVIEW LETTERS Volume: 80 Issue: 9 Pages: 1932-1935 Published: MAR 2 1998 11. Magnetic ordering and relation to the metal-insulator transition in Pr1-xSrxMnO3 and Nd1- 	Times Cited: 444 (from Web of Science Core Collection) Times Cited: 420
	x SrxMnO3 with x similar to 1/2 By: Kawano, H; Kajimoto, R; Yoshizawa, H; et al. PHYSICAL REVIEW LETTERS Volume: 78 Issue: 22 Pages: 4253-4256 Published: JUN 2 1997 Full Text from Publisher View Abstract	(from All Databases)
Heavy Fermions	13. Onset of antiferromagnetism in heavy-fermion metals By: Schroder, A; Aeppli, G; Coldea, R; et al. NATURE Volume: 407 Issue: 6802 Pages: 351-355 Published: SEP 21 2000	Times Cited: 380 (from All Databases)
GDR MEETICC Banyuls, Feb. 2018	Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwena	aëlle ROUSSE 3

1. What is a magnetic structure ?

A crystallographic structure consists in a long-range order of atoms, described by a unit cell, a space group, and atomic positions of the asymmetry unit.

A magnetic structure corresponds to the long range ordering of "magnetic moments" or "spins".

These "magnetic moments" or "spins" correspond to the spin of the unpaired electrons

1. What is a magnetic structure ?

These "magnetic moments" or "spins" correspond to the spin of the unpaired electrons

GDR MFF1

1. What is a magnetic structure ?

What is a magnetic structure ?

ferrimagnetic state When different magnetic atoms (or different oxidation states for the same atom)

=> Non-zero total magnetic moment

Knowing a magnetic structure means being able to say, *in whatever magnetic atom of whatever unit cell*, <u>what is the direction and value</u> <u>of the magnetic moment</u>

There are also plenty of more complex magnetic structures, arising e. g. from frustration : Helical Sinusoidal Incommensurate ...

Tools to describe a magnetic structure ?

There exist 2 approaches:

• Group representation theory applied to conventional crystallographic space groups and using the concept of propagation vector \vec{k} \rightarrow the most general (any \vec{k} vectors, incommensurate ones included)

• Magnetic symmetry approach: symmetry invariance of magnetic configurations (Magnetic Space Groups, often called Shubnikov groups) \rightarrow only $\vec{k} = \vec{0}, \vec{k} = \frac{1}{2}\vec{H}$, or $\vec{k} = \vec{H}$

Béatrice Grenier in the second part of this talk

2. Propagation vectors formalism to describe a magnetic structure

The position of atom j in unit-cell l is given by:

$$\vec{R}_{lj} = \vec{R}_l + \vec{r}_j$$

Where \vec{R}_l is a pure lattice translation

Cn

GDR

Banyuls, Feb. 2018

Arbitrary origin of the lattice

$$\vec{R}_{l_j} = \vec{R}_l + \vec{r}_j = l_1 \vec{a} + l_2 \vec{b} + l_3 \vec{c} + x_j \vec{a} + y_j \vec{b} + z_j \vec{c}$$

Whatever kind of magnetic structure in a crystal can be described mathematically by using a Fourier series

$$\vec{m}_{lj} = \sum_{\vec{k}} \vec{S}_{\vec{k}j} e^{-2i\pi(\vec{k}.\vec{R}_l)}$$

\dot{k} is a vector belonging to the Reciprocal Lattice

The reciprocal lattice is defined as a network of points in the Fourier space (Q-space)

which are the extremities of vectors: $\left| \vec{H} = h\vec{a}^* + k\vec{b}^* + l\vec{c}^* \right|$

GDR MEETI

with \vec{a}^* , \vec{b}^* , and \vec{c}^* the unit vectors of the reciprocal lattice, and h, k, l integers.

$$\vec{a}^{*} = C \quad \vec{b} \times \vec{c} \quad \rightarrow \quad \vec{a}^{*} \perp \vec{b} \text{ and } \vec{c}$$

$$\vec{b}^{*} = C \quad \vec{c} \times \vec{a} \quad \rightarrow \quad \vec{b}^{*} \perp \vec{a} \text{ and } \vec{c}$$

$$\vec{c}^{*} = C \quad \vec{c} \times \vec{b} \quad \rightarrow \quad \vec{c}^{*} \perp \vec{a} \text{ and } \vec{b}$$
where *C* is a constant
and *V* is the volume of the unit cell
in direct space:
$$V = (\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$$
In solid state physics, $C = 2\pi$
In crystallography, $C = 1$

$$\vec{a} \times \vec{a} = \vec{b}^{*} \cdot \vec{b} = \vec{c}^{*} \cdot \vec{c} = 1$$

$$\vec{a}^{*} \cdot \vec{a} = \vec{b}^{*} \cdot \vec{b} = \vec{c}^{*} \cdot \vec{c} = 1$$

$$\vec{a}^{*} \cdot \vec{b} = \vec{a}^{*} \cdot \vec{c} = 0$$

$$\vec{b}^{*} \cdot \vec{a} = \vec{b}^{*} \cdot \vec{c} = 0$$

$$\vec{c}^{*} \cdot \vec{a} = \vec{c}^{*} \cdot \vec{b} = 0$$

Propagation vector formalism

meaning of the propagation vector : analogy with plane waves

$$\vec{m}_{lj} = \sum_{\vec{k}} \vec{S}_{\vec{k}j} \ e^{-2i\pi(\vec{k}.\vec{R}_l)}$$

The propagation vector \vec{k} of a magnetic structure reflects:

- its periodicity L (k = 1/L)
- the direction it propagates

For a magnetic atom j, the magnetic moments \vec{m}_{lj} (cell l) form planes of parallel moments that are perpendicular to the direction of the propagation vector

 \vec{k}

1. Propagation vectors formalism ; $\vec{k} = (0, 0, 0)$

$$\vec{m}_{lj} = \sum_{\vec{k}} \vec{S}_{\vec{k}j} e^{-2i\pi(\vec{k}.\vec{R}_l)}$$

Let us examine the simple case k = (0, 0, 0)

$$\vec{m}_{lj} = \vec{S}_{\vec{k}j}$$
; both are real

Cnrs

Banyuls, Feb. 2018

In this case the **magnetic cell** is the *same* as the **nuclear cell**

Propagation vectors formalism ; $\vec{k} = (0, 0, 0)$

However the reverse is not true. Many AF structures have $\vec{k} = (0,0,0)$

A notation useful in perovskites

TABLE I. Crystallographic and magnetic parameters of LaMnO₃ obtained by Rietveld refinement at the diffractometer G4.2 using neutrons of λ =2.59 Å at *T*=1.4 K. The space group is *Pbnm*. The numbering of Mn atoms in the unit cell is Mn1 (1/2,0,0), Mn2 (1/2,0,1/2), Mn3 (0,1/2,1/2), and Mn4 (0,1/2,0). The basis function describing the magnetic structure is $[G_{\chi}, A_{\gamma}, F_{z}] \approx [0, A_{\gamma}, 0]$, corresponding to the irreducible representation $\Gamma_{4g}(\neg \neg)$ of *Pbnm* for **k**=0 (Ref. 17). The magnetic moments of the four Mn atoms follow the sequence $A_{\gamma}(+\neg \neg +)$. So constituting ferromagnetic (**a**,**b**) planes of magnetic moments aligned along **b** coupled antiferromagnetically along **c**.

2. Note on centered cells: C-centered cell

$$\vec{k} = (0, 0, 0)$$
?

 $\vec{k} = (1, 0, 0)$

$$\overrightarrow{m_1} = +m \, \vec{u} \overrightarrow{m_2} = +m \, \vec{u}$$

CNIS

GDR

Banyuls, Feb. 2018

For centered cells, we sum over atoms j of the primitive cell and values of \vec{k} may be $> \frac{1}{2}$

$$\overrightarrow{m_1} = +m \, \overrightarrow{u}$$

$$\overrightarrow{m_2} = +me^{-2i\pi((1,0,0).(\frac{1}{2},\frac{1}{2},0))} \, \overrightarrow{u}$$

$$\overrightarrow{m_2} = +me^{-2i\pi\frac{1}{2}} \, \overrightarrow{u}$$

$$\overrightarrow{m_2} = -m \, \overrightarrow{u}$$

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & <u>Gwenaëlle ROUSSE</u> 15

3. Propagation vector formalism ; $\vec{k} = \frac{1}{2}\vec{H}$

The propagation vector is a special point of the Brillouin Zone surface and $\vec{k} = \frac{1}{2} \vec{H}$, where \vec{H} is a reciprocal lattice vector.

 $\vec{R}_l = l_1 \vec{a} + l_2 \vec{b} + l_3 \vec{c}$

$$\vec{m}_{lj} = \sum_{\vec{k}} \vec{S}_{\vec{k}j} \ e^{-2i\pi(\vec{k}.\vec{R}_l)} = \vec{S}_{\vec{k}j} \ e^{-i\pi(\vec{H}.\vec{R}_l)} = \vec{S}_{\vec{k}j} \ (-1)^{n_l}$$
$$\vec{m}_{lj} = \vec{m}_{0j} \ (-1)^{n_l}$$

The structure is antiferromagnetic

Cnrs

GDR MFFTICC

Banyuls, Feb. 2018

The magnetic symmetry may also be described using Shubnikov magnetic space groups

Example (see Figure):
$$\vec{k} = (0, \frac{1}{2}, 0) \Rightarrow \vec{m}_{lj} = \vec{m}_{0j}(-1)^{l_2}$$

First magnetic neutron diffraction experiments: MnO

MnO structure

Detection of Antiferromagnetism by Neutron Diffraction*

а

CIS

GDR MEETICC

Banyuls, Feb. 2018

a = 4.45 ÅC. G. SHULL Oak Ridge National Laboratory, Oak Ridge, Tennessee $Fm\overline{3}m$ AND J. SAMUEL SMART Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland August 29, 1949 b а 100 80 60 80 °K 40 ntensité (neutrons/mn) 20 100 $a_0 = 4,43 \text{ Å}$ MnO 80 293 °K 60 Maille chimique 40 Maille magnétique $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ 20 $\vec{k} =$ b 20° 30° 10° 40° 50° Angle de diffraction

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 17

First magnetic neutron diffraction experiments: MnO

$$\vec{k}_1 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

Banyuls, Feb. 2018

Note: what about
$$\vec{k}_2 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \vec{k}_3 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 and $\vec{k}_4 = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$?

Are they equivalent ?

 \vec{k}_1 and \vec{k}_2 are equivalent if $\vec{k}_2 - \vec{k}_1$ is a reciprocal lattice vector \vec{H}

$$\vec{k}_2 - \vec{k}_1 = \left(\frac{\overline{1}}{2}, \frac{1}{2}, \frac{1}{2}\right) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) = (\overline{1}, 0, 0)$$

This is not a reciprocal lattice vector (lattice F), therefore these 4 propagation vectors are not equivalent => they constitute the star of k-vectors. Single-crystal: 4 different \vec{k} —domains

Note on multi- \vec{k} structures

Example 1: SrHo₂O₄

$$\overrightarrow{k_1} = (0, 0, 0)$$
$$\overrightarrow{k_2} = \left(0, 0, \frac{1}{2}\right)$$

Holmium distributed on 2 sites Ho1, Ho2

 $\overrightarrow{k_1} = (0, 0, 0)$ $\overrightarrow{k_2} = \left(0, 0, \frac{1}{2}\right)$

Note on multi- \vec{k} structures

4. Propagation vectors formalism: \vec{k} inside Brillouin zone

$$\vec{m}_{lj} = \sum_{\vec{k}} \vec{S}_{\vec{k}j} \ e^{-2i\pi(\vec{k}.\vec{R}_l)}$$

$$\vec{k} \text{ and } -\vec{k} \text{ should be considered } (\vec{k} \text{ and } -\vec{k} \text{ are not equivalent})$$

$$\vec{m}_{lj} = \vec{S}_{\vec{k}j} \ e^{-2i\pi(\vec{k}.\vec{R}_l)} + \vec{S}_{-\vec{k}j} \ e^{-2i\pi(-\vec{k}.\vec{R}_l)}$$

$$\vec{S}_{\vec{k}j} = \frac{1}{2} \left(\vec{R}\vec{e}_{\vec{k}j} + i \, \vec{I}\vec{m}_{\vec{k}j} \right) e^{-2i\pi\varphi_{\vec{k}j}}$$

six parameters are independent

Necessary condition for real \vec{m}_{lj} : $\vec{S}_{-\vec{k}j} = \vec{S}_{\vec{k}j}^*$

2 simple cases:

GDR MEETICC

Banyuls, Feb. 2018

1) Real
$$\vec{S}_{\vec{k}j}$$
 : $\vec{S}_{\vec{k}j} = \frac{1}{2} \left(\overrightarrow{Re}_{\vec{k}j} \right) e^{-2i\pi\varphi_{\vec{k}j}}$

2) Imaginary component $(\overrightarrow{Im}_{\vec{k}j})$ perpendicular to the real one $(\overrightarrow{Re}_{\vec{k}j})$

Sinusoidal magnetic structures

Helical magnetic structures

$$\vec{m}_{lj} = \vec{S}_{\vec{k}j} e^{-2i\pi(\vec{k}.\vec{R}_l)} + \vec{S}_{-\vec{k}j} e^{-2i\pi(-\vec{k}.\vec{R}_l)}$$

$$\vec{S}_{\vec{k}j} = \frac{1}{2} (m_{uj} \vec{u}_j + i m_{vj} \vec{v}_j) e^{-2i\pi\varphi_{\vec{k}j}} \qquad \text{with } \vec{u}_j \perp \vec{v}_j$$

$$\vec{S}_{-\vec{k}j} = \vec{S}_{\vec{k}j}^* = \frac{1}{2} (m_{uj} \vec{u}_j - i m_{vj} \vec{v}_j) e^{+2i\pi\varphi_{\vec{k}j}}$$

$$\vec{m}_{lj} = \frac{1}{2} m_{uj} \vec{u}_j \left(e^{-2i\pi(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j})} + e^{2i\pi(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j})} \right) + \frac{1}{2} m_{vj} \vec{v}_j i \left(e^{-2i\pi(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j})} - e^{2i\pi(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j})} \right)$$

$$\vec{m}_{lj} = m_{uj} \vec{u}_j \cos \left(2\pi \left(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j} \right) \right) + m_{vj} \vec{v}_j \sin \left(2\pi \left(\vec{k}.\vec{R}_l + \varphi_{\vec{k}j} \right) \right)$$

$$\vec{k} \parallel \vec{a}_{\vec{m}} \in (\vec{b}, \vec{c})$$

Banyuls, Feb. 2018

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & <u>Gwenaëlle ROUSSE</u> 23

Helix ($\vec{k} \parallel axis$)

GDR MEETICC

Cycloid ($\vec{k} \perp axis$)

Global outline

II- Magnetic structures

Description in terms of propagation vector: *the various orderings, examples*

Description in terms of symmetry:

Magnetic point groups: time reversal, the 122 magnetic point groups Magnetic lattices: translations and anti-translations, the 36 magnetic lattices Magnetic space groups = Shubnikov groups

Tools to describe a magnetic structure ?

There exist 2 approaches:

Banyuls, Feb. 2018

• Group representation theory applied to conventional crystallographic space groups and using the concept of propagation vector \vec{k} \rightarrow the most general (any \vec{k} vectors, incommensurate ones included)

tools based on this approach presented at the end of this lecture but theory not explained at all ("black box")

• Magnetic symmetry approach: symmetry invariance of magnetic configurations (Magnetic Space Groups, often called Shubnikov groups) \rightarrow only $\vec{k} = \vec{0}, \vec{k} = \frac{1}{2}\vec{H}, \text{ or } \vec{k} = \vec{H}$

main purpose of the following

Magnetic point groups Magnetic lattices Magnetic space groups

Magnetic point groups: Axial vs polar vectors

Effect of the crystallographic point group symmetries α on polar and axial vectors

Magnetic point groups: Axial vs polar vectors

Effect of the crystallographic point group symmetries α on polar and axial vectors

Banyuls, Feb. 2018

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 28

Magnetic point groups: Spin reversal and primed symmetries

To describe magnetic point symmetries, we need to introduce a new operator ...

"spin reversal" = time-reversal or anti-identity: 1'

 \rightarrow changes the sense of the current and thus flips the magnetic moment

 $\rightarrow \Theta = \{1,1'\}$ time reversal group

1' does not change nuclear positions and changes the sign of **all** magnetic moments \Rightarrow always present in non magnetic structures but **absent** in magnetically ordered ones !

N.B.: 1' does not change neither the direction of a polar vector (i.e., an electrical dipole)

Magnetic point groups: Spin reversal and primed symmetries

We can define new symmetry operations =

combination of a crystallographic point group sym. with 1' = "primed" symmetry

When a magnetic ordering occurs: **some point symmetries may be lost and become primed**

G: crystallographic point group

M: magnetic point group \rightarrow subgroup of the direct product of G with $\Theta = \{1,1'\}$ $M \subset G \otimes \Theta$

3 types of magnetic point groups:

GDR MFFT

Banyuls, Feb. 2018

1/32 colorless groups:M = G(Fedorov groups)2/32 gray groups: $M = G \cup G1'$ (paramagnetic groups)3/58 black-white groups: $M = H \cup (G - H)1'$ with H: subgroup of index 2 of G (halving group)and G - H: the remaining operators, i.e. those not in H

 \Rightarrow 122 magnetic point groups

<u>N.B.</u>: **Colorless** groups are also called **monochrome** groups **Analogy spin-reversal / color change**

Fig. 10.1.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal normal *Taken from: International Tables for Crystallography, volume A, p. 796*

Cnrs

GDR MFFTICC

Banyuls, Feb. 2018

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 32

Example: black-white magnetic point groups derived from 4/m

Cnrs

GDR MEETICC

Banyuls, Feb. 2018

$$G = 4/m \text{ has 3 subgroups of index 2:}$$

$$H_1 = 4 = \{1, \frac{4^+_z}{2^+_z}, 2^-_z, 4^-_z\}$$

$$H_2 = \overline{4} = \{1, \overline{4^+_z}, 2^-_z, \overline{4^-_z}\}$$

$$H_3 = 2/m = \{1, 2^-_z, \overline{1}, m^-_z\}$$

 \Rightarrow There are 4 possible magnetic groups:

$$M_0 = G = 4/m = \left\{1, 4_z^+, 2_z, 4_z^-, \overline{1}, \overline{4_z^+}, m_z, \overline{4_z^-}\right\}$$
 colorless group

$$M_{1} = H_{1} + (G - H_{1})1' = \left\{1, 4_{z}^{+}, 2_{z}, 4_{z}^{-}, \overline{1}', \overline{4_{z}^{+}}', m_{z}', \overline{4_{z}^{-}}'\right\} = 4/m'$$

$$M_{2} = H_{2} + (G - H_{2})1' = \left\{1, 4_{z}^{+'}, 2_{z}, 4_{z}^{-'}, \overline{1}', \overline{4_{z}^{+}}, m_{z}', \overline{4_{z}^{-}}\right\} = 4'/m'$$

$$M_{3} = H_{2} + (G - H_{2})1' = \left\{1, 4_{z}^{+'}, 2_{z}, 4_{z}^{-'}, \overline{1}, \overline{4_{z}^{+}}', m_{z}, \overline{4_{z}^{-}}'\right\} = 4'/m$$

black-white groups

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 33

bilbao crystallographic server $M_1 = \{1, 4_z^+, 2_z, 4_z^-, \overline{1'}, \overline{4_z^+}', m_z', \overline{4_z^-}'\} = 4/m'$ Magnetic Symmetry and ApplicationsMagnetic Point Group Tables of 4/m' (#11.4.38)
Useful data about magnetic point group 4/m'

Number of elements of the group (order): 8 This group is centrosymmetric This group is not polar This group is not compatible with ferromagnetism

Ν	(x,y,z) form	matrix form	Seitz symbol
1	x,y,z, +1 m _x ,m _y ,m _z	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	1
2	-x,-y,z, +1 -m _x ,-m _y ,m _z	$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$	2 _z
3	-y,x,z, +1 -m _y ,m _x ,m _z	$\left(\begin{array}{rrrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4 _z
4	y,-x,z, +1 m _y ,-m _x ,m _z	$\left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$	4z ⁻¹

Symmetry operations of the group

5	-x,-y,-z, -1 -m _{x1} -m _y ,-m _z	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)	-1'
6	x,y,-z, -1 m _x ,m _y ,-m _z	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)	m _z '
7	y,-x,-z, -1 m _y ,-m _x ,-m _z	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)	-4 _z '
8	-y,x,-z, -1 -m _y ,m _x ,-m _z	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)	-4z ⁻¹ '

GDR MEETICC Banyuls, Feb. 2018 Crysta

Not all of the magnetic point groups can be realized in a magnetically ordered system

 \rightarrow Admissible magnetic point groups: (for a magnetic atom placed at the origin) all the operators leave at least one spin component invariant

- none of the gray groups is admissible,

Banyuls, Feb. 2018

- many of the colorless and black-white groups are not admissible.

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 35

The 31 admissible magnetic point groups:

Admissible magnetic point groups			groups		Admissible spin direction
1	1				any direction
2′	2'/m'	m'm2'			\perp 2'-axis (and \perp <i>m</i> -plane for <i>m</i> ' <i>m</i> 2')
m'					any direction within the m' -plane
т					$\perp m$ -plane
m'm'm					$\perp m$ -plane
2'2'2					2-axis
2	2/m	m'm'2			2-axis
4	$\overline{4}$	4/m	42'2'		$\parallel 4 \text{ or } \overline{4}$ -axis
4m'm'	$\overline{4}2m'$		4/mm'm'		$\parallel 4 \text{ or } \overline{4}$ -axis
3	3	32′	3 <i>m</i> ′	$\overline{3}m'$	$\parallel 3 \text{ or } \overline{3}$ -axis
6	6	6/m	62'2'		$\parallel 6 \text{ or } \overline{6} \text{ -axis}$
6 <i>m'm</i> ′	$\overline{6}m'2'$		6 <i>/mm'm</i> '		$\parallel 6 \text{ or } \overline{6}$ -axis

Magnetic point groups: Prediction for macroscopic properties

• Example 1: Ferromagnetoelectrics

(spontaneous <u>dielectric polarization</u> \vec{P} & <u>magnetic polarization</u> \vec{M}) polar vector axial vector

Among the 31 admissible point groups (compatible with ferromagnetism), only 13 are also compatible with ferroelectricity

Symbol of syn	nmetry group	Allowed direction of		
Schoenflies	Hermann-Mauguin	Р	М	
C_1	1	Any	Any	
C_2	2	∥ 2	2	
$C_{2}(C_{1})$	2'	∥ 2′	$\perp 2'$	
$C_s = C_{1h}$	m	<i>m</i>	$\perp m$	
$\boldsymbol{C}_{s}(\boldsymbol{C}_{1})$	<i>m</i> ′	<i>m</i> ′	<i>m</i> ′	
$\boldsymbol{C}_{2\nu}(\boldsymbol{C}_2)$	<i>m'm</i> '2	2	2	
$C_{2\nu}(C_s)$	m'm2'	∥ 2′	$\perp m$	
C_4	4	∥4	∥4	
$C_{4v}(C_4)$	4 <i>m'm</i> '	∥4	∥4	
C_3	3	∥ 3	3	
$C_{3\nu}(C_3)$	3 <i>m</i> ′	∥ 3	3	
C_6	6	∥6	∥6	
$C_{6\nu}(C_6)$	6 <i>m' m'</i>	∥6	∥6	

Table 1.5.8.4. List of the magnetic point groups of the ferromagnetoelectrics

International tables for crystallography (2006), Vol. D, Section 1.5.8.3, pp. 141-142

Magnetic point groups: Prediction for macroscopic properties

• Example 2: Linear magnetoelectric effect

A magnetic field \vec{H} applied in a crystal can produce an electric polarization $\vec{P}: P_i = \alpha_{ij}H_j$ An electric field \vec{E} applied in a crystal can produce a magnetic moment $\vec{M}: M_i = \alpha_{ij}E_j$

- \rightarrow possible in 58 magnetic point groups
- \rightarrow predictions on the form of the $\tilde{\alpha}$ tensor:

Hermann–Mauguin $\frac{1}{\overline{1}'}$	Matrix representation of the property tensor α_{ij} $\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$	-
2 (= 121) m' (= 1m'1) 2/m' (= 12/m'1) (unique axis y)	$\begin{bmatrix} \alpha_{11} & 0 & \alpha_{13} \\ 0 & \alpha_{22} & 0 \\ \alpha_{31} & 0 & \alpha_{33} \end{bmatrix}$	
m (= 1m1) 2' (= 12'1) 2'/m (= 12'/m1) (unique axis y)	$\begin{bmatrix} 0 & \alpha_{12} & 0 \\ \alpha_{21} & 0 & \alpha_{23} \\ 0 & \alpha_{32} & 0 \end{bmatrix}$	
222 m'm'2 [2m'm', m'2m'] m'm'm'	$\begin{bmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{22} & 0 \\ 0 & 0 & \alpha_{33} \end{bmatrix}$	
mm2 2'2'2 2'mm' [m2'm'] mmm'	$\begin{bmatrix} 0 & \alpha_{12} & 0 \\ \alpha_{21} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	_

$\begin{array}{c} 4, 4, 4/m \\ 3, \overline{3}' \\ 6, \overline{6}', 6/m' \end{array}$	$\begin{bmatrix} \alpha_{11} & \alpha_{12} & 0 \\ -\alpha_{12} & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{33} \end{bmatrix}$
4 4' 4'/m'	$\begin{bmatrix} \alpha_{11} & \alpha_{12} & 0 \\ \alpha_{12} & -\alpha_{11} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
422, $4m'm'$ $\bar{4}'2m'$ [$\bar{4}'m'2$], $4/m'm'm'$ 32, $3m'$, $\bar{3}'m'$ 622, $6m'm'$ $\bar{6}'m'2$ [$\bar{6}'2m'$], $6/m'm'm'$	$\begin{bmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{33} \end{bmatrix}$
4mm, 42'2' $\bar{4}'2'm[\bar{4}'m2'], 4/m'mm$ 3m, 32', $\bar{3}'m$ 6mm, 62'2' $\bar{6}'m2'[\bar{6}'2'm], 6/m'mm$	$\begin{bmatrix} 0 & \alpha_{12} & 0 \\ -\alpha_{12} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
4 2 <i>m</i> , 4 <i>m</i> ′2′ 4′22′, 4′ <i>m</i> ′ <i>m</i> 4′/ <i>m</i> ′ <i>m</i> ′ <i>m</i>	$\begin{bmatrix} \alpha_{11} & 0 & 0 \\ 0 & -\alpha_{11} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
23, $m'\bar{3}'$ 432, $\bar{4}'3m'$, $m'\bar{3}'m'$	$\begin{bmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{11} & 0 \\ 0 & 0 & \alpha_{11} \end{bmatrix}$

 $4 \overline{4}' 4/m'$

Taken from the ITC, Volume D, p. 138

Magnetic point groups: Prediction for macroscopic properties

Table of tensor components

Number of independent coefficients: 2

Cnrs

Table of tensor components

Number of independent coefficients: 3

Magnetic Bravais lattices

To describe magnetic translation symmetries, we introduce a new operator ...

Anti-translation $\vec{t}' = \vec{t} \mathbf{1}'$ (replaces the propagation vector formalism)

 \rightarrow limitation of the Shubnikov symmetry: only $\vec{k} = \vec{0}$, $\vec{k} = \vec{H}/2$, or $\vec{k} = \vec{H}$

- Gray translation groups: not considered (incompatible with magnetic order)
- Colorless translation groups: same as the 14 Bravais lattices (only translations)

- Black-white translation groups: contain translations and anti-translations

 $M_L = H_L \cup (T - H_L) \mathbf{1}'$

with H_L : subgroup of index 2 of the translation group T and $T - H_L$: the remaining operators, i.e. those not in H_L

 \rightarrow 22 black-white Bravais lattices

GDR MFFT

The 36 magnetic Bravais lattices

Magnetic Bravais lattices: OG vs BNS notations

BNS: N. V. Belov, N. N. Neronova, and T.S. Smirnova (1957) **OG**: W. Opechowski and R. Guccione (1965)

- \rightarrow same lattice symbol X for colorless translation groups: X = P, I, F, A, B, C, R
- \rightarrow different lattice symbol X_{Y} for black-white translation groups $H_{L} \cup (T H_{L})1'$

http://stokes.byu.edu/iso/magneticspacegroupshelp.php

CNIS

GDR MFFTICC

Magnetic Bravais lattices: OG vs BNS notations

BNS: N. V. Belov, N. N. Neronova, and T.S. Smirnova (1957) **OG**: W. Opechowski and R. Guccione (1965)

- \rightarrow same lattice symbol X for colorless translation groups: X = P, I, F, A, B, C, R
- \rightarrow different lattice symbol X_{Y} for black-white translation groups $H_{L} \cup (T H_{L}) 1'$

CIS

GDR MEETICC

Banyuls, Feb. 2018

 $\vec{a} + \vec{b}$

Magnetic space groups: Primed and unprimed symmetries

As for magnetic point groups and translation groups, magnetic space group symmetries can be primed (g') or not (g)

Example:

Using the same procedure as for magnetic point groups and translation groups allows to obtain and classify the **1651 magnetic space groups = Shubnikov groups**

Banyuls, Feb. 2018

• Daniel B. Litvin (2001) Pennsylvania State University, Reading, USA Magnetic group tables electronic book

Full description of all Shubnikov groups (in a form similar to that of the ITC, volume A, for crystallographic space groups), using the OG notation.

http://sites.psu.edu/ecsphysicslitvin/

Crystallographic and **Magnetic Structures** / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 45

ISOTROPY Software Suite

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84606, USA, stokesh@byu.edu

Description: The ISOTROPY software suite is a collection of software which applies group theoretical methods to the analysis of phase transitions in crystalline solids. How to cite: ISOTROPY Software Suite, iso.bvu.edu

References and Resources

Isotropy subgroups and distortions

- ISODISTORT: Explore and visualize distortions of crystalline structures. Possible distortions include atomic displacements, atomic ordering, strain, and magnetic moments.
- ISOSUBGROUP: Interactive program using user-friendly interface to list isotropy subgroups
- ISOTROPY: Interactive program using command lines to explore isotropy subgroups and their associated distortions.
- SMODES: Find the displacement modes in a crystal which brings the dynamical matrix to block-diagonal form, with the smallest possible blocks.
- FROZSL: Calculate phonon frequencies and displacement modes using the method of frozen phonons.

Space groups and irreducible representations

- ISOCIF: Create or modify CIF files.
- FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit cell
- ISO-IR: Tables of Irreducible Representations. The 2011 version of IR matrices.
- ISO-MAG: Tables of magnetic space groups, both in human-readable and computer-readable forms

Superspace Groups

- ISO(3+d)D: (3+d)-Dimensional Superspace Groups for d=1,2,3
- ISO(3+1)D: Isotropy Subgroups for Incommensurately Modulated Distortions in Crystalline Solids: A Complete List for One-Dimensional Modulations
- FINDSSG: Identify the superspace group symmetry given a list of symmetry operators.
- TRANSFORMSSG: Transform a superspace group to a new setting

Phase Transitions

- · COPL: Find a complete list of order parameters for a phase transition, given the space-group symmetries of the parent and subgroup phases.
- INVARIANTS: Generate invariant polynomials of the components of order parameters.
- COMSUBS: Find common subgroups of two structures in a reconstructive phase transition

Linux

ISOTROPY Software Suite for Linux; includes ISOTROPY, FINDSYM, SMODES, COMSUBS.

 Harold T. Stokes and Branton J. Campbell (2010) Brigham Young University, Provo, Utah, USA **Isotropy** software suite Compiled by using the data of D. B. Litvin (OG and BNS notations) http://iso.byu.edu/iso/isotropy.php

Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 46

bilbao crystallographic server

	Magnetic Symmetry and Applications
MGENPOS	General Positions of Magnetic Space Groups
MWYCKPOS	Wyckoff Positions of Magnetic Space Groups
MNORMALIZER	Normalizers of Magnetic Space Groups
IDENTIFY MAGNETIC GROUP	Identification of a Magnetic Space Group from a set of generators in an arbitrary setting
BNS2OG 🛆	Transformation of symmetry operations between BNS and OG settings
mCIF2PCR 🛆	Transformation from mCIF to PCR format (FullProf).
	Magnetic Point Group Tables
MAGNEXT	Extinction Rules of Magnetic Space Groups
MAXMAGN 🛆	Maximal magnetic space groups for a given space group and a propagation vector
MAGMODELIZE	Magnetic structure models for any given magnetic symmetry
k-SUBGROUPSMAG 🛆	Magnetic subgroups consistent with some given propagation vector(s) or a supercell
MAGNDATA 🕰	A collection of magnetic structures with transportable cif-type files
MVISUALIZE 🕰	3D Visualization of magnetic structures with Jmol
	Symmetry-adapted form of crystal tensors in magnetic phases

• Mois I. Aroyo, J. Manuel Perez-Mato, G. de la Flor, E. S. Tasci, S. V. Gallego, ... Many tools dealing with magnetic space groups (from 2010) http://www.cryst.ehu.es

G: crystallographic space group, H: subgroup of index 2 of G M: magnetic space group

BNS vs OG notations for the Shubnikov groups:

 \rightarrow types I, II, and III: same notation

\rightarrow type IV: different notation

GDR MFFTICC

Banyuls, Feb. 2018

 $M = H \cup (G - H)1'$

with translation group T split between H and G - H (\exists anti-translations) $M_L = H_L \cup (T - H_L)1'$

Lattice symbol: see previous part (magnetic Bravais lattices)

Symbols for the planes and axes of symmetry:

BNS notation: those belonging to subgroup *H*

 \rightarrow always unprimed

 \rightarrow can be different from those given for parent group G

OG notation: those given for parent group *G*

 \rightarrow can be primed or unprimed

Magnetic space groups: Example using the ITC – volume A

The magnetic space groups can be constructed using the International tables for Crystallography, Volume A

Example: space group Ima2 (No. 46)

Symmetry operations

For (0,0,0) + set (1) 1 (2) 2 0,0,z (3) a = x,0,z (4) $m = \frac{1}{4},y,z$ For $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ + set (1) $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ (2) $2(0,0,\frac{1}{2}) = \frac{1}{4},\frac{1}{4},z$ (3) $c = x,\frac{1}{4},z$ (4) $n(0,\frac{1}{2},\frac{1}{2}) = 0,y,z$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$; (2); (3)

Maximal non-isomorphic subgroups

Ι	[2] <u><i>I</i>1a1</u> (<i>Cc</i> , 9)	(1; 3)+
	[2] <i>Im</i> 11 (<i>Cm</i> , 8)	(1; 4)+
	[2] <u><i>I</i>112</u> (<i>C</i> 2, 5)	(1; 2)+
IIa	$[2] Pna2_{1}(33)$	1; 3; (2; 4) + $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
	[2] Pnc2(30)	1; 2; (3; 4) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
	[2] Pma2(28)	1; 2; 3; 4 1, $(2, 2) + (1, 1, 1)$
	$[2] Pmc2_{1}(26)$	1; 4; (2; 3) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
IIb	none	

For simplicity, we drop off the translation group T in the following

 $Ima2 = \{1, m_x, a_y, 2_z\} T$

Colorless trivial magnetic space group:

→ **BW1 magnetic space groups:** $M = H \cup (G - H)1'$ with all translations of G in H <u>I1a1</u> \cup (Ima2 - I1a1)1' = {1, a_y } + { m_x , 2_z }1' = Im'a2'

 $\frac{Im11}{I112} \cup (Ima2 - Im11)1' = \{1, m_x\} + \{a_y, 2_z\}1' = Ima'2'$ $\frac{I112}{I112} \cup (Ima2 - I112)1' = \{1, 2_z\} + \{m_x, a_y\}1' = Im'a'2$

BW2 magnetic space groups

GDR MEETICC Banyuls, Feb. 2018

Magnetic space groups: Example using the ITC – volume A

Example: space group Ima2 (No. 46) - continuation

Symmetry operations For (0,0,0)+ set (1) 1 (2) 2 0,0,z (3) a = x,0,z (4) $m = \frac{1}{4},y,z$ For $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ + set (1) $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ (2) $2(0,0,\frac{1}{2}) = \frac{1}{4},\frac{1}{4},z$ (3) $c = x,\frac{1}{4},z$ (4) $n(0,\frac{1}{2},\frac{1}{2}) = 0,y,z$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$; (2); (3)

Maximal non-isomorphic subgroups

Cnrs

Ι	[2]I1a1(Cc, 9)	(1; 3)+
	[2] <i>Im</i> 11(<i>Cm</i> , 8)	(1; 4)+
	[2]I112(C2,5)	(1; 2)+
IIa	[2] <i>Pna2</i> , (33)	1; 3; (2; 4) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
	[2] Pnc2(30)	1; 2; (3; 4) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
	[2] <i>Pma</i> ² (28)	1; 2; 3; 4
	$[2] Pmc2_{1}(26)$	1; 4; (2; 3) + $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
IIb	none	

GDR MEETICC

Banyuls, Feb. 2018

BW2 magnetic space groups:

$$M = H \cup (G - H)1' \text{ with } H_L \text{ in } H \text{ and } T - H_L \text{ in } G - H$$
$$\vec{t}_I = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \text{ becomes an anti-translation}$$
$$H_L = \{\vec{t} | \vec{t} = u\vec{a} + v\vec{b} + w\vec{c}; u, v, w \in \mathbb{Z}\}$$
$$T - H_L = \{\vec{t} | \vec{t} = u\vec{a} + v\vec{b} + w\vec{c} + \vec{t}_I; u, v, w \in \mathbb{Z}\} = H'_L$$

		BNS	OG
$Pna2_{1}: \{1, n_{x}, a_{y}, 2_{1z}\}H_{L} + \{1, m_{x}, c_{y}, 2_{z}\}H_{L}'$	=	$P_I na2_1$	$I_P m' a 2'$
<u>Pnc2</u> : $\{1, n_x, c_y, 2_z\}H_L + \{1, m_x, a_y, 2_{1z}\}H'_L$	=	$P_I na2_1$	$I_P m' a 2'$
<u>Pma2</u> : $\{1, m_x, a_y, 2_z\}H_L + \{1, n_x, c_y, 2_{1z}\}H'_L$	=	$P_I na2_1$	$I_P m' a 2'$
$Pmc2_{1}: \{1, m_{x}, c_{y}, 2_{1z}\}H_{L} + \{1, n_{x}, a_{y}, 2_{z}\}H_{L}'$	=	$P_I na2_1$	$I_P m' a 2'$

Magnetic space groups: *Example using the ITC – volume A*

Bilbao Crystallographic Server → MGENPOS → Table of Magnetic Space Group Symbols

The magnetic space groups derived from the Fedorov space group: Ima2 (#46)

Listed with respect to the BNS setting:

- #46.241 Ima2 [OG: Ima2 #46.1.338] Type I (Fedorov)
- #46.242 Ima21' [OG: Ima21' #46.2.339] Type II (grey group)
- #46.243 lm'a2' [OG: lm'a2' #46.3.340] Type III (translationgleiche)
- #46.244 Ima'2' [OG: Ima'2' #46.4.341] Type III (translationgleiche)
- #46.245 lm'a'2 [OG: lm'a'2 #46.5.342] Type III (translationgleiche)
- #46.246 Icma2 [OG: CIm'm2' #35.12.247] Type IV (klassengleiche)
- #46.247 Iama2 [OG: AIm'm'2 #38.13.277] Type IV (klassengleiche)
- #46.248 I_bma2 [OG: A_lbm2 #39.8.285] Type IV (klassengleiche)

Listed with respect to the OG setting:

CINS

GDR MEETICC

- #46.1.338 Ima2 [BNS: Ima2 #46.241] Type I (Fedorov)
- #46.2.339 Ima21' [BNS: Ima21' #46.242] Type II (grey group)
- #46.3.340 Im'a2' [BNS: Im'a2' #46.243] Type III (translationgleiche)
- #46.4.341 Ima'2' [BNS: Ima'2' #46.244] Type III (translationgleiche)
- #46.5.342 lm'a'2 [BNS: lm'a'2 #46.245] Type III (translationgleiche)
- #46.6.343 Ipma2 [BNS: Pima2 #28.98] Type IV (klassengleiche)
- #46.7.344 Ipm'a2' [BNS: Pina21 #33.155] Type IV (klassengleiche)
- #46.8.345 Ipma'2' [BNS: Pimc21 #26.77] Type IV (klassengleiche)
- #46.9.346 Ipm'a'2 [BNS: PInc2 #30.122] Type IV (klassengleiche)

Above T_N : magnetic space group = Pnma1' (gray group) Below T_N : $\vec{k} = (0,0,0) \Rightarrow$ possible maximal subgroups (index 2)?

			Pn'ma	m'mm		Orthorhombic
			62.3.504	P2 ₁ /n'2 ₁	'/m2 ₁ '/a	
Po	sitic	ons		Coordir	nates	
Mu	Itipli	city,	Magnetic			
Wyckoff letter,		ff letter,	componen	ts		
Citt	509	inniða y.	Ļ			
8	d	1	(1) x,y,z [u,v,w]	(2) \overline{x} +1/2, \overline{y} ,z+1/2 [u,v, \overline{w}]	(3) \overline{x} ,y+1/2, \overline{z} [u, \overline{v} ,w]	(4) $x+1/2, \overline{y}+1/2, \overline{z}+1/2 [u, \overline{v}, \overline{w}]$
			(5) $\overline{x}, \overline{y}, \overline{z} \ [\overline{u}, \overline{v}, \overline{w}]$	(6) x+1/2,y, z +1/2 [u , v ,w]	(7) x, \overline{y} +1/2,z [\overline{u} ,v, \overline{w}]	(8) x+1/2,y+1/2,z+1/2 [u,v,w]
4	с	.m.	x,1/4,z [0,v,0]	x+1/2,3/4,z+1/2 [0,v,0]	x,3/4,z [0,v,0]	x+1/2,1/4, x +1/2 [0, v, 0]
4	b	1'	0,0,1/2 [0,0,0]	1/2,0,0 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]
4	a (1 (0,0,0 [0,0,0]	1/2,0,1/2 [0,0,0]	0,1/2,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]

 \vec{m} cannot be on a Wyckoff position whose symmetry is $\vec{1}'$!!! ($\vec{1}'$ is not an admissible magnetic point group)

Parts of pages 1 and 2 (/2) of Pn'ma Shubnikov group, D. B. Litvin

Cnrs

GDR MFFTICC

Co	ntinı	ued		62.8.509 Pn'ma'					
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).									
Ро	sitic	ons							
Mu Wy Site	ltipli ⁄cko e Sy	city, ff letter, mmetry.		Coordir	nates				
8	d	1	(1) x,y,z [u,v,w]	(2) x+1/2, y,z+1/2 [u,v,w]	(3) \overline{x} ,y+1/2, \overline{z} [\overline{u} ,v, \overline{w}]	(4) x+1/2, y+1/2, z+1	/2 [u ,v,w]		
			(5) $\overline{x}, \overline{y}, \overline{z}$ [u,v,w]	(6) x+1/2,y,z+1/2 [u,v,w]	(7) x, \overline{y} +1/2,z [\overline{u} ,v, \overline{w}]	(8) x+1/2,y+1/2,z+1/	2 [u ,v,w]		
4	с	.m.	x,1/4,z [0,v,0]	x+1/2,3/4,z+1/2 [0,v,0]	x,3/4,z [0,v,0]	x+1/2,1/4, x+1/2 [0,v,0]			
4	b	1	0,0,1/2 [u,v,w]	1/2,0,0 [u,v,w]	0,1/2,1/2 [u,v,w]	1/2,1/2,0 [u,v,w]			
4	а	1	0,0,0 [u,v,w]	1/2,0,1/2 [u,v,w]	0,1/2,0 [<u>u</u> ,v, <u>w</u>]	1/2,1/2,1/2 [u,v,w]	Mn		
Sv	Symmetry of Special Projections								

Symmetry of Special Projections

Along [0,0,1] p 2'mg'	Along [1,0,0] c 2'mm'	Along [0,1,0] p 2gg1'
$a^* = -b b^* = a/2$	a*=b b*=c	$\mathbf{a}^* = \mathbf{c} \mathbf{b}^* = \mathbf{a}$
Origin at 0,0,z	Origin at x,1/4,1/4	Origin at 0,y,0

page 2/2 of Pn'ma'

D. B. Litvin

Continued	Admis	sible ma	gnetic po	int gr	oups	Admissible spin direction		
Generators selected (1); t(1,0,0		$\overline{1}$			(any direction		
Positions	2′	2' <i>/m</i> '	m'm2'			\perp 2'-axis (and \perp <i>m</i> -plane for <i>m</i> ' <i>m</i> 2')		
Multiplicity,	m' any direction within the					any direction within the m^\prime -plane		
Site Symmetry.	m	m $\perp m$ -plane				$\perp m$ -plane		
8 d 1 (1) x,y,z [u,v,w]	(2) x+1/	2, y ,z+1/2	[u,v, w]	(3) x	,y+1/2,	$(4) \times \frac{1}{2}, \overline{y} = \frac{1}{2$		
(5) x,y,z [u,v,w]	(6) x+1/2	,y, z +1/2 [ı	u,v,w]	(7) x	, y +1/2,	z, z [u,v,w] (8) x+1/2,y+1/2,z+1/2 [u,v,w]		
4 c .m. x,1/4,z[0,v,0]	x+	1/2,3/4,z+	1/2 [0,v,0]	x,3/4	, z [0,v,	x+1/2,1/4, x+1/2 [0,v,0]		
4 b 1 0,0,1/2 [u,v,w]	1/2,0,0 [u,v,w] 0,1/2,1/2 [u,v,w]			,v,w] 1/2,1/2,0 [u,v,w]				
4 a (1) 0,0,0 [u,v,w]	1/2	2,0,1/2 [u,v	,w]	0,1/2,0 [u,v,w]		,w] 1/2,1/2,1/2 [u,v,w] Mn		
Symmetry of Special Projections	5							
Along [0,0,1] p 2'mg'	Alc	ong [1,0,0]	c 2'mm'			Along [0,1,0] p 2gg1'		
Origin at 0,0,z	Ori	igin at x,1/	4,1/4			Origin at 0,y,0		
page 2/2 of Pn'ma' D. B. Litvin	The sy (<i>m</i> ี mu	mmetry Ist be ⊥	of this \ to the m	Wyck hirror	off po plan	osition imposes $\vec{m} \parallel \vec{b}$ e)		
GDR MEETICC Banyuls, Feb. 2018 Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 57								

bilbao crystallographic server

MGENPOS

CNrs

GDR MEETICC

General Positions of Magnetic Space Groups

General Positions of the Group Pn'ma' (#62.448)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: Pn'ma' (#62.8.509)

N	Standard/Default Setting							
	(x,y,z) form		Matrix form			m	Geom. interp.	Seitz notation
1	x, y, z, +1 m _x ,m _y ,m _z	(1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1	1 <u>+1</u>	{1 0}
2	-x, y+1/2, -z, +1 -m _x ,m _y ,-m _z	(-1 0 0	0 1 0	0 0 -1	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	2 (0,1/2,0) 0,y,0 <u>+1</u>	{ 2 ₀₁₀ 0 1/2 0 }
3	-x, -y, -z, +1 m _x ,m _y ,m _z	(-1 0 0	0 -1 0	0 0 -1	0 0 0	-1 0,0,0 <u>+1</u>	{-1 0}
4	x, -y+1/2, z, +1 -m _x ,m _y ,-m _z	(1 0 0	0 -1 0	0 0 1	$\begin{pmatrix} 0\\ 1/2\\ 0 \end{pmatrix}$	m x,1/4,z <u>+1</u>	{ m ₀₁₀ 0 1/2 0 }
5	x+1/2, -y+1/2, -z+1/2, -1 -m _x ,m _y ,m _z	(1 0 0 0	0 -1 0 0	0 0 -1 0	1/2 1/2 1/2 1/2	2 (1/2,0,0) x,1/4,1/4 <u>-1</u>	{ 2' ₁₀₀ 1/2 1/2 1/2 }
6	-x+1/2, -y, z+1/2, -1 m _x ,m _y ,-m _z	(-1 0 0	0 -1 0	0 0 1	1/2 0 1/2	2 (0,0,1/2) 1/4,0,z <u>-1</u>	{ 2' ₀₀₁ 1/2 0 1/2 }
7	-x+1/2, y+1/2, z+1/2, -1 -m _x ,m _y ,m _z	(-1 0 0	0 1 0	0 0 1	$\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$	n (0,1/2,1/2) 1/4,y,z <u>-1</u>	{ m' ₁₀₀ 1/2 1/2 1/2 }
8	x+1/2, y, -z+1/2, -1 m _x ,m _y ,-m _z	(1 0 0	0 1 0	0 0 -1	1/2 0 1/2	a x,y,1/4 <u>-1</u>	{ m' ₀₀₁ 1/2 0 1/2 }

Magnetic Symmetry and Applications

MWYCKPOS Wyckoff Positions of Magnetic Space Groups

Wyckoff Positions of the Group Pn'ma' (#62.448)

For this space group, BNS and OG settings coincide. Its label in the OG setting is given as: Pn'ma' (#62.8.509)

Multiplicity Wyckoff letter		Coordinates				
8 d		$\begin{array}{ll} (x,y,z \mid m_{x},m_{y},m_{z}) & (x+1/2,-y+1/2,-z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (-x,y+1/2,-z \mid -m_{x},m_{y},-m_{z}) & (-x+1/2,-y,z+1/2 \mid m_{x},m_{y},-m_{z}) \\ (-x,-y,-z \mid m_{x},m_{y},m_{z}) & (-x+1/2,y+1/2,z+1/2 \mid -m_{x},m_{y},m_{z}) \\ (x,-y+1/2,z \mid -m_{x},m_{y},-m_{z}) & (x+1/2,y,-z+1/2 \mid m_{x},m_{y},-m_{z}) \end{array}$				
4	с	$\begin{array}{ll} (x,1/4,z \mid 0,m_y,0) & (x+1/2,1/4,-z+1/2 \mid 0,m_y,0) \\ (-x,3/4,-z \mid 0,m_y,0) & (-x+1/2,3/4,z+1/2 \mid 0,m_y,0) \end{array}$				
4	b	$\begin{array}{ll} (0,0,1/2 \mid m_{x},m_{y},m_{z}) & (1/2,1/2,0 \mid -m_{x},m_{y},m_{z}) \\ (0,1/2,1/2 \mid -m_{x},m_{y},-m_{z}) & (1/2,0,0 \mid m_{x},m_{y},-m_{z}) \end{array}$				
4	а	$\begin{array}{ll} (0,0,0 \mid m_x,m_y,m_z) & (1/2,1/2,1/2 \mid -m_x,m_y,m_z) \\ (0,1/2,0 \mid -m_x,m_y,-m_z) & (1/2,0,1/2 \mid m_x,m_y,-m_z) \end{array}$				

bilbao crystallographic server

Magnetic Symmetry and Applications

MAGNDATA 🛆

A collection of magnetic structures with transportable cif-type files

N	Entry	Structure	Propagation vector(s)	Parent space group	Transformation from parent	Magnetic (super)space group	Magnetic point group
1	0.1 LaMnO ₃		0,0,0	Pnma (62) (standard)	(a,b,c ;0,0,0)	Pn'ma' (62.448) (standard)	m'm'm (8.4.27)

LaMnO₃:

Cnrs

GDR MEETICC

Banyuls, Feb. 2018

Mn located at (0,0,0), i.e. on $\overline{1}$

Macroscopic measurements \rightarrow AF with $\vec{m} \parallel \vec{a}$ -axis $\vec{c} \odot$

origin shift by (1/2, 0, 0) in this Fig.

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE 60

C

Visualization of *.mcif files

• **FpStudio** (FullProf Suite) – J. Rodriguez-Carvajal and L. Chapon

Bilbao Crystallographic Server

http://webbdcrista1.ehu.es/magndata/mvisualize.php

MVISUALIZE: 3D Visualization of magnetic structures with Jmol

MVISUALIZE: 3D visualization of magnetic structures with Jmol

This program lets the visualization of magnetic structures given in mcif file format using Jmol. Also, for commensurate magnetic structures, it can be used to transform magnetic structures to other setting and to obtain, if the paramagnetic "parent" structure is specified in the introduced mcif file, the domain-related equivalent descriptions corresponding to the magnetic structure. These alternative descriptions of the magnetic structure can be downloaded in mcif file format and visualized as well

• Vesta

GDR MEETICC Banyuls, Feb. 2018

Crystallographic and Magnetic Structures / Neutron Diffraction, <u>Béatrice GRENIER</u> & Gwenaëlle ROUSSE

Please submit a structure file (mcif file, Jmol png-3D file):

Parcourir... Aucun fichier sélectionné. Upload

61

Magnetic domains

Symmetry of the ordered magnetic state lower than that of the paramagnetic state

 G_0 : paramagnetic Shubnikov group of order n_0 G: ordered Shubnikov group of order n

 $\Rightarrow \frac{n_0}{n}$ magnetic domains

There exist **4 types of magnetic domains**: Time-reversed domains: 180° domains Orientation domains: *s*-domains Configuration domains: *k*-domains Chiral domains (if $\overline{1}$ is lost)

Cnrs

GDR

How to find the possible magnetic structures using group theory?

- Determine experimentally the propagation vector \vec{k}
- Select in the crystallographic space group G the sym. op. g that leave \vec{k} invariant \rightarrow Little group G_k (subgroup of G) = { $g \in G | \alpha \vec{k} = \vec{k} + \vec{H}$ } with $g = {\alpha | \vec{t}_{\alpha}}$
- Write the magnetic representation Γ = set of $3n \times 3n$ matrices for all sym. op. of G_k describing how each magnetic component is transformed

n equivalent magnetic atoms, 3 magnetic components u, v, w for each atom d such matrices with d the order of G_k

• Reduce Γ into Irreducible representations (Ireps) $\Gamma_{\!\nu}$

Banyuls, Feb. 2018

- (i.e., block diagonalize the matrices as much as possible): $\Gamma = a_1\Gamma_1 \oplus a_2\Gamma_2 \oplus ...$
- For each IRep Γ_{ν} appearing in the decomposition of Γ , find its basis vectors $\psi_{\nu}^1, \psi_{\nu}^2, ...$

 Landau theory (for 2nd order transition): The magnetic structure that establishes at the phase transition corresponds to an IRep that persists while all other IReps cancel
 ⇒ the magnetic structure is described by the basis vectors of the IRep that persists, while the basis vectors associated to all the other IReps cancel.

Group representation theory (= representation analysis) developped by E. F. Bertaut

Group representation theory

- Most frequently used softwares to determine the IReps and thus the possible magnetic orderings:
- Basireps (from the Fullprof suite) Juan Rodriguez-Carvajal
- Sarah Andrew Wills
- MODY W. Sikora, F. Białas, L. Pytlik
- **ISOTROPY** Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell
- Input file:crystallographic space grouppropagation vectoratomic coordinates of the magnetic atom(s)

Group representation theory: Application to LaMnO₃

Input:	crystallographic space group	Pnma
	propagation vector	$\vec{k} = (0,0,0)$
	atomic coordinates of the magnetic atom	x = 0, y = 0, z = 0

<u>Output</u>: 4 irreducible representations of dimension 1, each contained 3 times in $\Gamma = 3\Gamma_1 \oplus 3\Gamma_2 \oplus 3\Gamma_3 \oplus 3\Gamma_4$

$$\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=2}^{n} \prod_{i=1}^{n} \prod_{$$

CNrs

Summary

Magnetic point groups:

Banyuls, Feb. 2018

As for crystallographic point groups, magnetic point groups are very important to make predictions on macroscopic magnetic properties

Magnetic space groups vs Propagation vectors & IReps:

A magnetic structure can be described in two ways:

- 1/ Propagation vector and irreducible representations (IReps) or
- 2/ Magnetic space group (like crystallographic space groups with an additional symmetry operator: 1' = spin reversal)

Both descriptions can be used for softwares refining a magnetic structure

<u>N.B.</u>: 1st approach: more general propagation vector: very useful for diffraction → see lecture III *Nevertheless, the 2nd approach can be generalized to*

incommensurate structures \rightarrow superspace groups