(High field) Transport properties of strongly correlated metals

Cyril PROUST

Laboratoire National des Champs Magnétiques Intenses

http://www.lncmi.cnrs.fr

http://www.emfl.eu

1. Definitions & Reminders

2. Experimental techniques

3. Transport properties of SCES

4. High field transport measurements

1. Definitions & Reminders

Comparison with band structure calculations, effect of interactions, phase transitions...

A Global properties: C_ν, χ_{Pauli} , R_H, $\Delta \rho / \rho$...

FS measurements

Topographic properties: ARPES, AMRO, QO

Global properties

• Specific heat

$$C_{v} = \frac{\partial U}{\partial T} = \frac{\pi^{2}}{3} k_{B} g(\varepsilon_{F}) \times T \quad \text{where} \quad U = \int_{0}^{E_{F}} \varepsilon n(\varepsilon) f(\varepsilon) d\varepsilon$$
$$g(\varepsilon_{F}) = \frac{m^{*} k_{F}}{\hbar^{2} \pi^{2}}$$

$$R_{H} = \frac{\rho_{xy}}{B} = \frac{1}{nq}$$

• Magnetoresistance
$$\vec{J} = ne\vec{v} = e \int_{SF} \vec{v} \frac{\delta \vec{k} \cdot d\vec{S}}{4\pi^2}$$
 where $\delta \vec{k} = \frac{e\tau}{\hbar} \vec{E}$
$$\vec{J} = -\frac{e^2 \tau}{4\pi^3 \hbar} \int_{SF} \vec{v} \cdot d\vec{S} \vec{E}$$

Drude theory

Electrical conductivity	$\sigma = \frac{ne^2\tau}{m^*}$	[Ω cm] ⁻¹	
Thermal conductivity	$\kappa = \frac{1}{3} v_F^2 \tau C_v =$	$\frac{1}{3}\ell v_F C_v \qquad [V$	V / K cm]
Wiedemann-Franz law:	$\frac{\kappa}{\sigma} = \frac{\frac{1}{3}m^*v_F^2C_v}{ne^2}$	2	
if $C_v = \frac{3}{2}$	nk_B and	$\frac{1}{2}m^*v_F^2 = \frac{3}{2}nk_B$	$\frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$
$\lim_{T\to 0} \frac{\kappa}{T\sigma} =$	= L_0 where	$L_0 = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$	

Universal law, i.e. robust signature of Fermi liquid theory, stating that the electronic carriers of heat are fermionic excitations of charge *e*.

Boltzmann theory

 $f_k(r)$ Distribution function which measure the number of carrier (k, r) The distribution function can change through

(i) <u>*Diffusion*</u> Carriers of velocity v_k enter whilst others leave

$$\dot{f}_k\Big|_{diff} = -\boldsymbol{v}_k \cdot \frac{\partial f_k}{\partial \boldsymbol{r}}$$

(ii) <u>External fields</u> $\dot{\mathbf{k}} = -\frac{e}{\hbar}(\mathbf{E} + \mathbf{v}_{\mathbf{k}} \wedge \mathbf{H})$ $f_{\mathbf{k}} \rightarrow f_{\mathbf{k}+t\dot{\mathbf{k}}}$ $\dot{f}_{\mathbf{k}}\Big|_{field} = -\frac{e}{\hbar}(\mathbf{E} + \mathbf{v}_{\mathbf{k}} \wedge \mathbf{H}).\frac{\partial f_{\mathbf{k}}}{\partial \mathbf{k}}$

(iii) <u>Scattering</u>

Several processes throw carries from one state to another through interaction or collision

$$\dot{f}_k\Big|_{scatt}$$

Total rate of change: $\dot{f}_k = \dot{f}_k \Big|_{diff} + \dot{f}_k \Big|_{field} + \dot{f}_k \Big|_{scatt}$

$$-\boldsymbol{v}_{\boldsymbol{k}}\cdot\frac{\partial f_{\boldsymbol{k}}}{\partial \boldsymbol{r}}-\frac{e}{\hbar}(\boldsymbol{E}+\boldsymbol{v}_{\boldsymbol{k}}\wedge\boldsymbol{H})\cdot\frac{\partial f_{\boldsymbol{k}}}{\partial \boldsymbol{k}}=\dot{f}_{\boldsymbol{k}}\Big|_{scatt}\quad\text{and}\quad \boldsymbol{J}=\int e\boldsymbol{v}_{\boldsymbol{k}}f_{\boldsymbol{k}}d\boldsymbol{k}$$

Boltzmann equation

Rq: (i) Isotropic condition:
$$J = \frac{e^2 \tau}{4\pi^3 \hbar} \int v_k dS \cdot E$$

(ii) Shockley-Chambers tube integral

$$\sigma_{x\beta} = -\frac{e^3 B}{2\pi^2 \hbar^2} \int_0^T \left(\int_0^\infty v_x(t) e^{-t'/\tau(t)} v_\beta(t+t') dt' \right) dt$$

1930 de Haas-van Alphen / Shubnikov-de Haas effect

W.J. de Haas

(1878-1960)

P.M. van Alphen (1906-1967)

L.V. Shubnikov (1901-1945)

Temperature / Disorder effects on quantum oscillations

• Low T measurements

 $\hbar \omega_c > k_B T$

• Need high quality single crystals

$$\hbar \omega_c > \frac{\hbar}{\tau} \Rightarrow \omega_c \tau > 1$$

Lifshitz-Kosevich theory (1956)

$$\begin{array}{l} \mathsf{T}\neq \mathsf{0} \\ \mathsf{p}=1 \end{array} \qquad \qquad \Delta \mathsf{R}, \Delta \mathsf{M} \propto \mathsf{R}_{\mathrm{T}} \mathsf{R}_{\mathrm{D}} \mathsf{R}_{s} \sin \left[2\pi \left(\frac{\mathsf{F}}{\mathsf{B}} - \gamma \right) \right] \end{array}$$

$$\frac{F}{B} = \frac{\hbar}{2\pi q} \frac{A_F}{B} \qquad \text{Onsager relation} \Rightarrow A_F \qquad \text{Extremal area}$$

$$R_T = \frac{X}{sh(X)} \text{ where } X = 14.694 \times Tm_c / B \qquad \Rightarrow \text{(m}^*) \qquad \text{Cyclotron mass}$$

$$R_D = \exp\left(-\frac{14.694 \times T_D m_c}{B}\right) = \exp\left(-\frac{\pi}{\mu B}\right) \qquad \Rightarrow T_D = \frac{\hbar}{2\pi k_B \tau} \qquad \text{Dingle temperature} \text{(mean free path)}$$

$$R_S = \cos\left(\frac{\pi}{2} m_b^* g\right) \qquad \Rightarrow m_b^* g$$

Direct measure of the Fermi surface extremal area

(but number of orbits ? location in k-space ?)

Rq: Luttinger theorem at 2D

$$n_{2D} = \frac{2A_k}{(2\pi)^2} = \frac{F}{\phi_0}$$

Quantum oscillations: the case of Sr_2RuO_4

Quantum oscillations: the case of Sr_2RuO_4

	α	ρ	Y
Frequency $F(kT)$	3.05	12.7	18.5
Average k_F (Å ⁻¹)	0.302	0.621	0.750
$\Delta k_F/k_F$ (%)	0.21	1.3	< 0.9
Cyclotron mass (m_e)	3.4	6.6	12.0
Band calc. $F(kT)$	3.4	13.4	17.6
Band calc. $\Delta k_F/k_F$ (%)	1.3	1.1	0.34
Band mass (m_e)	1.1	2.0	2.9

 $\begin{array}{ll} \mathrm{Sr_2RuO_4\ cleaved\ at\ 180\ K} \\ \mathrm{T}{=\ 10\ K} & \mathrm{h}\nu{=}28\ \mathrm{eV} \\ \\ \mathrm{Damascelli\ et\ al,\ PRL\ 85\ 5194\ (2000)} \end{array}$

2. Experimental techniques

Electrical transport vs Thermal transport

Thermal transport setup

insulator: a = 0

s-wave superconductor: a = 0*d*-wave superconductor : $a \neq 0$ YBCO (optimal)

Electrical transport measurements

2 points measurements

Sample connected with silver paint

~ 400 µm

4 points measurements

Microstructures (FIB carved) of CeRhIn₅ \sim 60 x 60 µm

Moll et al, Nature Comm. 6, 6663 (2015)

Lock-in amplifier

Phase-sensitive detection

DC signal if $\Theta_{sig} - \Theta_{ref} = c^{te}$

Lock-in amplifier

High magnetic field facility

LNCMI-Grenoble: static fields

Resistive coil $I_{max} = 32\ 000\ A, P = 24\ MW$ Water flow ~ 300 L/s (for cooling) Max. field = 36.5 T

Hybrid project (2019) 34 T (R) + 9 T (SC) = 43 T

NHMFL Tallahassee (45 T)

LNCMI-Toulouse: pulsed fields

LNCMI-Toulouse: pulsed fields

3. Transport properties of SCES

Inspired by a talk of N. Hussey

Transport properties of SCES

What makes DC transport measurements such an important probe of SCES ?

 $\checkmark\,$ " Often the first thing to be measured, but the last to be understood..."

✓ "What scatters may also pair"

Hence electrical resistivity is a powerful, albeit coarse, probe of superconductivity

✓ In the Fermi liquid picture the resistivity is T² with A / $\gamma^2 \approx 10^{-5} \,\mu\Omega$ cm mol² K²/J²

 \checkmark Close to a quantum critical point the resistivity is linear in T

High temperature: bad metals

What constitutes metallic behaviour?

What constitutes metallic behaviour?

Basic definition: A material whose resistivity increases with temperature

Ioffe-Mott-Regel limit

$$\rho(T) = \frac{m^*}{ne^2} \Gamma(T) \propto \frac{1}{\ell(T)}$$

Semiclassical theory breaks down if

 ℓ become shorter than the interatomic distance *a*

OR

$$\ell > \lambda_F = \frac{2\pi}{k_F}$$

$$k_F \ell > 1$$

 $\ell \approx a \Rightarrow$ saturation of the resistivity ($\Delta k \approx$ size of Brillouin zone)

Conventional metallic transport at high T

Hussey et al, Phil. Mag 84 2847 (2004)

$$\sigma(\omega) = \frac{\sigma_0}{1 + \omega^2 \tau^2}$$

- Drude term = coherent QP contribution
- Peak centred at $\omega = 0$ but extends up to W
- Drude peak broadens at high T with a width at half-maximum equal to $\Gamma(T < T_m)$
- Saturation of $\rho \Leftrightarrow$ Loss of coherence of the QP $\sigma(\omega, T)$ evolves into a plateau (T < W)

Spectral weight preserved below $\omega \sim W$ (bandwidth)

Bad metallic transport in cuprates

Conventional vs bad metallic transport at high T

A bad metal behaves as if it is a QP insulator which is render metallic by collective fluctuations (e.g. CDW, SDW, stripes...)

Low temperature: T² resistivity

Correlated Fermi liquid at low T

 T^2 resistivity originates from electron-electron scattering processes near E_F

Electrons participating in the scattering event are those confined to a width of $k_B T / E_F$

Overdoped cuprates

Heavy fermions

Nakamae et al, PRB 68 100502 (2003)

Lohneysen, JPCM 8 9689 (1996)

Kadowaki-Woods ratio

$$\rho(T) = \rho_0 + AT^2$$

$$C_{el} = \gamma T = \frac{\pi^2}{6} k_B^2 N(\varepsilon_F) T$$

$$A/\gamma^2 = \text{const.} \Rightarrow A \propto N(\varepsilon_F)^2$$

Yamada & Yoshida, *Prog.Theor.Phys.* **76** 621 (86) Auerbach & Levin, *JAP* **61** 3162 (87) Coleman, *PRL* **59** 1026 (87) Miyake, Matsuura & Varma, *SSC* **71** 1149 (89) Kontani, *JPSJ* **73** 515 (04)

Kadowaki & Woods, SSC 58 507 (86)

$$A/\gamma^{2} \sim a_{0} = 10^{-5} \mu \Omega \text{cm.mol}^{2} \text{.K}^{2}/\text{J}^{2}$$

$$A \propto \gamma_0^2 \propto m^{*2}$$

$$A_{i} = \left(\frac{8\pi^{3}ack_{B}^{2}}{e^{2}\hbar^{3}}\right) \cdot \left(\frac{m_{i}^{*2}}{k_{Fi}^{3}}\right)$$

Hussey, JPSJ 74 1107 (2005)

Correlated Fermi liquid at low T

Low temperature: Quantum criticality

Quantum criticality

'Classical' phase transition

Quantum phase transition

Phase transition that is driven not by T but by quantum fluctuations ('zero point motion')

$$\Delta x.\,\Delta p \geq \hbar$$

As T \rightarrow 0, thermal motion ceases but electron cannot be at rest (Δx and Δp fixed)

 \Rightarrow « State of constant agitation » that can melt order

Melting of ice = increase in thermal motion of the molecules as *T* is raised

Quantum critical metals

Quantum ordered Quantum ordered Quantum disordered

Quantum critical metals

Organic superconductors

Doiron-Leyraud et al, PRB 80 214531 (2009)

30

m*/m_b

Pnictides

Shibauchi et al, ARCMP 5 1113 (2014)

Cuprates

Daou et al, Nature Phys. 5 31 (2009)

Origin of the T-linear resistivity

 $\frac{VOLUME 82, NUMBER 21}{Interplay of Disorder and Spin Fluctuations in the Resistivity near a Quantum Critical Point A. Rosch} \rho \sim T$ Competition of weak, but isotropic impurity scattering and strong scattering from spin-fluctuations

PHYSICAL REVIEW BVOLUME 51, NUMBER 141 APRIL 1995-IIResistivity as a function of temperature for models with hot spots
on the Fermi surface
R. Hlubina* and T. M. RiceResistivity as a function of temperature for models with hot spots
on the Fermi surface
R. Hlubina* and T. M. RiceBUTOnly effective at "hot spots" on the FS connected by the AF wavevector !
The rest of the FS short-circuit the anomalous transport and yield $\rho \sim T^2$

Locally critical quantum phase transitions in strongly correlated metals

Qimiao Si*, Silvio Rabello*, Kevin Ingersent† & J. Lleweilun Smith*

Nature 413,804 (2001)

<u>Proposition</u>: scattering near a QCP have a local character, i.e. no k-dependence \Rightarrow the entire FS is "hot" : Marginal Fermi liquid with $\rho \sim T$

Origin of the T-linear resistivity

Planckian dissipation

For SCES, $0.9 < \alpha < 2.2$ in spite of differences in dimensionality and microscopic nature of the interactions.

The law of quantum mechanism forbids the dissipation time to be any shorter then τ

4. High fields transport properties

Why high magnetic field ?

RESTORE THE NORMAL STATE OF SUPERCONDUCTORS YBCO 150 $H_{c2}(T)$ 100 50 D p^2 0 0.1 0.2 0.3 0 Hole doping, p G. Grissonnanche et al. Nature Comm. 5, 3280 (2014)

« Although it is difficult to predict the role that quantum criticality will play in our final understanding of the cuprates, the case for a QCP would be made very compelling if a new experiment were to reveal a sharp and pronounced change in some electronic property in the zero-temperature limit, on crossing the QCP as a function of doping. »

Broun, Nature Physics 4 170 (2008)

Phase with a distinct order parameter?

M. Norman et al, Nature'98

180 K

Pseudogap = partial suppression of the low energy excitation as seen by spectroscopy and thermodynamic probes and located at the anti-node (from ARPES)

The broken symmetries are instability of the pseudogap

- Pseudogap and charge order are separate phenomena.
- Sharp drop of the carrier density at the critical point of the pseudogap.

High fields transport properties in LSCO

Access ground state using pulsed magnetic fields

T-linear term becomes dominant at low T

Anomalous criticality in LSCO

Anomalous criticality in LSCO

Doping dependence of the linear term of the resistivity in hole-doped cuprates

"What scatters may also pair"

Taillefer, ARCMP 1, 51 (2010)