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The aim of this tutorial is two-fold : first, to have a glance at how interactions
affect the standard Bloch band structure of a solid, and second, to get familiar
with a software (IGOR), widely used in the photoemission community, that
is both user-friendly and powerful for data analysis (and even for interfacing
experiments).

For simplicity, we will work only along one momentum direction, hence
using k = k, and will take the lattice constant as 1 Å, hence the edges of the
Brillouin zone at k = ±π.

Numerical constants : If, as usual in ARPES, the energies are expressed
in eV, the momenta in Å−1, and the rest in SI units, then one has, in the
appropriate units : ~2/2me = (1/0.512)2 = 3.815, where me is the bare elec-
tron mass. Additionally, 1 eV/kB = 11604 K.

Energy reference : We define the Fermi level as the zero of binding energy.
At zero Kelvin, negative energies correspond to occupied states, and positive
energies to non-occupied states.

For electrons photo-emitted from a many-body state of energy ε and
momentum k, the ARPES intensity is given by :

I(ε, k) = I0 × A(ε, k)× f(ε, T ), (1)

where I0 is the “dipole matrix element”, that we will consider henceforth
constant and equal to 1 (in reality, I0 can depend on electron momentum and
photon energy and polarization !), f(ε, T ) is the Fermi-Dirac distribution at
temperature T , and A(ε, k) is the many-body spectral function. The last is
given by :

A(ε, k) =
1

π

Σ2(ε, k)

[ε− ε0(k)− Σ1(ε, k)]2 + Σ2(ε, k)2
, (2)
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where Σ1(ε, k) and Σ2(ε, k) are the real and imaginary parts of the electron
self-energy (and are Hilbert transforms of each other ! ), and ε0(k) is the bare
electron dispersion, i.e., the Bloch band of a free independent electron in the
ionic periodic lattice.

From now on, to simplify the calculations, we will assume that the carriers
are electrons, and their density is small, so that ε0(k) ≈ −E0 + (~2/2me)k

2

(i.e., the periodic variation of the energy is neglected), with (−E0) < 0 the
energy of the bottom of the band. Additionally, we assume that the self-
energy is k-independent : Σ(ε, k) = Σ(ε) ∀k.

1 Free electron with constant scattering rate

1. To familiarize yourself with IGOR’s vectors of data (called “waves”),
plot f(ε, T ) versus ε for several temperatures. Be mindful of using a
meaningful energy scale (eV or meV) for the horizontal axis !

2. We assume that the electron scattering rate is constant (i.e., energy-
independent), for instance due to impurity scattering. Hence, Σ2(ε) =
Γ0 = 0.02 eV. In this case, causality imposes that Σ1(ε) = 0 ∀ε (can
you show it ?). Plot, using color scales, the electron spectral function,
then the ARPES intensity (spectral function times the Fermi-Dirac dis-
tribution at temperature T ). Play using different band-bottom energies
and different temperatures.

2 Interaction with an Einstein phonon

The interaction of an electron with an Einstein phonon (a single phonon
at an energy ~Ω0 > 0) is characterized by :

ΣE
2 (−~Ω0 < ε < ~Ω0) = 0 (3)

ΣE
2 (ε < −~Ω0) = (π/2)λ~Ω0 (4)

ΣE
2 (ε > ~Ω0) = (π/2)λ~Ω0, (5)

where λ > 0 is the (unitless) electron-phonon coupling constant. Thus, the
total electron self-energy is :

Σ2(ε) = Γ0 + ΣE
2 (ε). (6)

The real part of the self-energy of an Einstein phonon is (can you show
it ?) :

ΣE
1 (ε) = −λ~Ω0

2
log

∣∣∣∣ε+ ~Ω0

ε+ ~Ω0

∣∣∣∣ , (7)
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1. Plot, using color scales, the electron spectral function, then the ARPES
intensity. Play using different phonon energies, relative to the band-
bottom, and different coupling constants. Choose a low temperature
(e.g., 10 K) and a small impurity scattering rate (e.g., Γ0 = 0.02 eV) to
avoid a too large extrinsic (temperature + scattering) broadening and
better see the effects of varying the other parameters.

3 Fermi liquid

For a 3D Fermi liquid of band-bottom −E0 (hence “Fermi energy E0”),
the imaginary part of the self-energy is :

Σ2(ε)
FL = α3D

π

8E0

ε2 + (πkBT )2

1 + e−ε/kBT
, (8)

where, for most densities in the metallic range, the constant α3D ≈ 1. (G. Giu-
lani and G. Vignale, The Quantum Theory of the Electron Liquid, Cambridge
University Press 2005).

1. Calculate numerically the real part of the Fermi-liquid self-energy.

2. Plot the ARPES intensity for a Fermi liquid. Play using different tem-
peratures and values for α3D.

4 To play at home : Resolution broadening

Write a procedure to convolute the above-calculated ARPES intensities
with a 2D Gaussian representing the instrumental energy and momentum
resolutions (typical values are 1 − 100 meV and 0.001 − 0.1 Å−1). Analyze
the effect of resolution broadening on the different spectral features.
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